Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "kernel PCA" wg kryterium: Temat


Wyświetlanie 1-1 z 1
Tytuł:
Predicting pairwise relations with neural similarity encoders
Autorzy:
Horn, F.
Müller, K. R.
Powiązania:
https://bibliotekanauki.pl/articles/200921.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
neural networks
kernel PCA
dimensionality reduction
matrix factorization
SVD
similarity preserving embeddings
sieci neuronowe
jądro
PCA
redukcja wymiarowości
faktoryzacja macierzy
Opis:
Matrix factorization is at the heart of many machine learning algorithms, for example, dimensionality reduction (e.g. kernel PCA) or recommender systems relying on collaborative filtering. Understanding a singular value decomposition (SVD) of a matrix as a neural network optimization problem enables us to decompose large matrices efficiently while dealing naturally with missing values in the given matrix. But most importantly, it allows us to learn the connection between data points’ feature vectors and the matrix containing information about their pairwise relations. In this paper we introduce a novel neural network architecture termed similarity encoder (SimEc), which is designed to simultaneously factorize a given target matrix while also learning the mapping to project the data points’ feature vectors into a similarity preserving embedding space. This makes it possible to, for example, easily compute out-of-sample solutions for new data points. Additionally, we demonstrate that SimEc can preserve non-metric similarities and even predict multiple pairwise relations between data points at once.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2018, 66, 6; 821-830
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies