Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "artificial material" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Optimization of Ferrite Stainless Steel Mechanical Properties Prediction with artificial Intelligence Algorithms
Autorzy:
Honysz, R.
Powiązania:
https://bibliotekanauki.pl/articles/354759.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
analysis and modelling
numerical techniques
computational material science
artificial algorithms
stainless steel
Opis:
The article presents a computational model build with the use of artificial neural networks optimized by genetic algorithm. This model was used to research and prediction of the impact of chemical elements and heat treatment conditions on the mechanical properties of ferrite stainless steel. Optimization has allowed the development of artificial neural networks, which showed a better or comparable prediction result in comparison to un-optimized networks has reduced the number of input variables and has accelerated the calculation speed. The introduced computational model can be applied in industry to reduce the manufacturing costs of materials. It can also simplify material selection when an engineer must properly choose the chemical elements and adequate plastic and/or heat treatment of stainless steels with required mechanical properties.
Źródło:
Archives of Metallurgy and Materials; 2020, 65, 2; 749-753
1733-3490
Pojawia się w:
Archives of Metallurgy and Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Prediction optimization of mechanical properties of ferrite stainless steels after forging treatment with use of genetic algorithms
Autorzy:
Honysz, R.
Powiązania:
https://bibliotekanauki.pl/articles/378963.pdf
Data publikacji:
2019
Wydawca:
Stowarzyszenie Komputerowej Nauki o Materiałach i Inżynierii Powierzchni w Gliwicach
Tematy:
numerical techniques
Computational Material Science
artificial algorithms
stainless steel
techniki numeryczne
komputerowa nauka o materiałach
algorytmy sztucznej inteligencji
Stal nierdzewna
Opis:
Purpose: The paper describes the use of artificial neural networks to research and predict the effect of chemical components and thermal treatment conditions on stainless steel's mechanical characteristics optimized by genetic algorithm. Design/methodology/approach: The quantity of input variables of artificial neural networks has been optimized using genetic algorithms to enhance the prediction quality of artificial neural network and to enhance their efficiency. Then a computational model was trained and evaluated with optimized artificial neural networks. Findings: Optimization, with the exception of tensile strength, has enabled the creation of artificial neural networks, which either showed a better or similar performance from base networks, as well as a decreased amount of input variables As a consequence, noise data is decreased in the computational model built with the use of these networks. Research limitations/implications: Data analysis was required to confirm the relevance of obtaining information used for modelling to use in training procedures for artificial neural networks. Practical implications: Using artificial intelligence enables the multi-faceted growth of stainless steel engineering, even though there is only a relatively small amount of descriptors. Built and optimized computational model building using optimized artificial neural networks enables prediction of mechanical characteristics after normalization of forged ferritic stainless steels. Originality/value: In order to decrease production expenses of products, an introduced model can be obtained in manufacturing industry. It can also simplify the selection of materials if the engineer has to correctly choose chemical elements and appropriate plastics and/or heat processing of stainless steels, having the necessary mechanical characteristics.
Źródło:
Archives of Materials Science and Engineering; 2019, 100, 1/2; 13-20
1897-2764
Pojawia się w:
Archives of Materials Science and Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Application of Artificial Neural Networks in Modeling of Manufactured Front Metallization Contact Resistance for Silicon Solar Cells
Zastosowanie sztucznych sieci neuronowych w modelowaniu rezystancji kontaktu wytwarzanej przedniej metalizacji krzemowych ogniw słonecznych
Autorzy:
Musztyfaga-Staszuk, M.
Honysz, R.
Powiązania:
https://bibliotekanauki.pl/articles/356591.pdf
Data publikacji:
2015
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
computational material science
artificial neural networks
silicon solar cell
selective laser sintering
screen printing
co-firing in the furnace
zastosowanie sztucznych sieci neuronowych
krzemowe ogniwa słoneczne
selektywne spiekanie laserowe
sitodruk
wypalanie w piecu
Opis:
This paper presents the application of artificial neural networks for prediction contact resistance of front metallization for silicon solar cells. The influence of the obtained front electrode features on electrical properties of solar cells was estimated. The front electrode of photovoltaic cells was deposited using screen printing (SP) method and next to manufactured by two methods: convectional (1. co-fired in an infrared belt furnace) and unconventional (2. Selective Laser Sintering). Resistance of front electrodes solar cells was investigated using Transmission Line Model (TLM). Artificial neural networks were obtained with the use of Statistica Neural Network by Statsoft. Created artificial neural networks makes possible the easy modelling of contact resistance of manufactured front metallization and allows the better selection of production parameters. The following technological recommendations for the screen printing connected with co-firing and selective laser sintering technology such as optimal paste composition, morphology of the silicon substrate, co-firing temperature and the power and scanning speed of the laser beam to manufacture the front electrode of silicon solar cells were experimentally selected in order to obtain uniformly melted structure well adhered to substrate, of a small front electrode substrate joint resistance value. The prediction possibility of contact resistance of manufactured front metallization is valuable for manufacturers and constructors. It allows preserving the customers’ quality requirements and bringing also measurable financial advantages.
Artykuł przedstawia zastosowanie sztucznych sieci neuronowych do predykcji rezystancji przedniej metalizacji w krzemowych ogniwach słonecznych. Oceniono wpływ tak wytworzonej elektrody przedniej na własności elektryczne ogniw fotowoltaicznych. Przednią elektrodę ogniw fotowoltaicznych naniesiono metodą sitodruku SP (ang. Screen Printing) i następnie wytwarzano dwoma metodami: konwencjonalną (1. wypalanie w piecu taśmowym) i niekonwencjonalną (2. selektywne spiekanie laserowe). Do wyznaczenia rezystancji elektrod przednich zastosowano metodę linii transmisyjnych TLM (ang. Transmission Line Model). Sztuczne sieci neuronowe zostały opracowane z wykorzystaniem pakietu Statistica Neural Network firmy Statsoft. Opracowane sztuczne sieci neuronowe umożliwią modelowanie rezystancji wytworzonej przedniej metalizacji i ułatwią lepszy dobór parametrów produkcji. Następujące zalecenia technologiczne sitodruku połączonego z wypalaniem w piecu i selektywnym spiekaniem laserowym takie jak optymalny skład pasty, morfologię podłoża krzemowego, temperaturę wypalania oraz moc i prędkość skanowania wiązki laserowej, do wytworzenia przedniej elektrody krzemowych ogniw słonecznych dobrano eksperymentalnie celem uzyskania celem uzyskania jednolicie stopionej struktury dobrze przylegającej do podłoża, małej wartości rezystancji połączenia elektrody przedniej z podłożem. Możliwość estymacji rezystancji przedniej metalizacji jest wartościowa dla producentów i konstruktorów. Pozwala ona na dotrzymanie wymagań klienta i przynosi wymierne zyski.
Źródło:
Archives of Metallurgy and Materials; 2015, 60, 3A; 1673-1678
1733-3490
Pojawia się w:
Archives of Metallurgy and Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies