Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Dettlaff, A." wg kryterium: Autor


Wyświetlanie 1-1 z 1
Tytuł:
Total Domination Versus Paired-Domination in Regular Graphs
Autorzy:
Cyman, Joanna
Dettlaff, Magda
Henning, Michael A.
Lemańska, Magdalena
Raczek, Joanna
Powiązania:
https://bibliotekanauki.pl/articles/31342314.pdf
Data publikacji:
2018-05-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
domination
total domination
paired-domination
Opis:
A subset S of vertices of a graph G is a dominating set of G if every vertex not in S has a neighbor in S, while S is a total dominating set of G if every vertex has a neighbor in S. If S is a dominating set with the additional property that the subgraph induced by S contains a perfect matching, then S is a paired-dominating set. The domination number, denoted γ(G), is the minimum cardinality of a dominating set of G, while the minimum cardinalities of a total dominating set and paired-dominating set are the total domination number, γt(G), and the paired-domination number, γpr(G), respectively. For k ≥ 2, let G be a connected k-regular graph. It is known [Schaudt, Total domination versus paired domination, Discuss. Math. Graph Theory 32 (2012) 435–447] that γpr(G)/γt(G) ≤ (2k)/(k+1). In the special case when k = 2, we observe that γpr(G)/γt(G) ≤ 4/3, with equality if and only if G ≅ C5. When k = 3, we show that γpr(G)/γt(G) ≤ 3/2, with equality if and only if G is the Petersen graph. More generally for k ≥ 2, if G has girth at least 5 and satisfies γpr(G)/γt(G) = (2k)/(k + 1), then we show that G is a diameter-2 Moore graph. As a consequence of this result, we prove that for k ≥ 2 and k ≠ 57, if G has girth at least 5, then γpr(G)/γt(G) ≤ (2k)/(k +1), with equality if and only if k = 2 and G ≅ C5 or k = 3 and G is the Petersen graph.
Źródło:
Discussiones Mathematicae Graph Theory; 2018, 38, 2; 573-586
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies