Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Saiki, A." wg kryterium: Autor


Wyświetlanie 1-3 z 3
Tytuł:
Ion-Exchange Reaction Of A-Site In A2Ta2O6 Pyrochlore Crystal Structure
Reakcja wymiany jonowej w podsieci a w strukturze krystalicznej pirochloru A2Ta2O6
Autorzy:
Matsunami, M.
Hashizume, T.
Saiki, A.
Powiązania:
https://bibliotekanauki.pl/articles/351274.pdf
Data publikacji:
2015
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
K2Ta2O6
Na2Ta2O6
ion-exchange
pyrochlore structure
perovskite structure
wymiana jonowa
struktura pirochloru
struktura perowskitu
Opis:
Na+ or K+ ion rechargeable battery is started to garner attention recently in Place of Li+ ion cell. It is important that A+ site ion can move in and out the positive-electrode materials. When K2Ta2O6 powder had a pyrochlore structure was only dipped into NaOH aqueous solution at room temperature, Na2Ta2O6 was obtained. K2Ta2O6 was fabricated from a tantalum sheet by a hydrothermal synthesize with KOH aqueous solution. When Na2Ta2O6 was dipped into KOH aqueous solution, K2Ta2O6 was obtained again. If KTaO3 had a perovskite structure was dipped, Ion-exchange was not observed by XRD. Because a lattice constant of pyrochlore structure of K-Ta-O system is bigger than perovskite, K+ or Na+ ion could shinny through and exchange between Ta5+ and O2− ion site in a pyrochlore structure. K+ or Na+ ion exchange of A2Ta2O6 pyrochlore had reversibility. Therefore, A2Ta2O6 had a pyrochlore structure can be expected such as Na+ ion rechargeable battery element.
Akumulatory w którym jako nośniki ładunku wykorzystywane są jony Na+ lub K+ budzą coraz większe zainteresowanie jako alternatywa dla ogniw litowo-jonowych. Należy podkreślić, że kationy w podsieci A+ potrafią się przemieszczać z- i do dodatnio naładowanych materiałów elektrodowych. Gdy proszek K2Ta2O6 posiadający strukturę pirochloru zanurzono w roztworze wodnym NaOH w temperaturze pokojowej, otrzymano Na2Ta2O6. K2Ta2O6 otrzymano poprzez obróbkę arkuszu tantalu metodą hydrotermalną wykorzystując roztwór wodny KOH. Gdy zanurzono Na2Ta2O6 w wodnym roztworze KOH, otrzymano z powrotem K2Ta2O6. Natomiast, gdy zanurzono KTaO3 o strukturze perowskitu, nie obserwowano wymiany jonowej. Dlatego, że stała sieciowa w strukturze pirochloru układu K-Ta-O jest większa niż w przypadku perowskitu, jony K+ lub Na+ mogą się poruszać i wymieniać w podsieci Ta5+ i O2− w pirochlorze. Wymiana jonów K+ lub Na+ w pirochlorze A2Ta2O6 jest odwracalna. Z tego powodu można się spodziewać, że związek A2Ta2O6 o strukturze pirochloru może znaleźć potencjalne zastosowanie jako element akumulatora pracującego z jonami Na+.
Źródło:
Archives of Metallurgy and Materials; 2015, 60, 2A; 941-944
1733-3490
Pojawia się w:
Archives of Metallurgy and Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Synthesis Of Fe Doped LiMn2O4 Cathode Materials For Li Battery By Solid State Reaction
Synteza materiału katodowego LiMn2O4 domieszkowanego Fe metodą reakcji w fazie stałej do zastosowania w bateriach Li
Autorzy:
Horata, N.
Hashizume, T.
Saiki, A.
Powiązania:
https://bibliotekanauki.pl/articles/355902.pdf
Data publikacji:
2015
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
doped LiMn2O4
lithium ion battery
cathode material
solid state reaction
domieszkowanie LiMn2O4
bateria litowo-jonowa
materiały katodowe
reakcja w fazie stałej
Opis:
LiFe0.1Mn1.9O4 is expected as a cathode material for the rechargeable lithium-ion batteries. LiMn2O4 has been received attention because this has advantages such as low cost and low toxicity compared with other cathode materials of LiCoO2 and LiNiO2. However, LiMn2O4 has some problems such as small capacity and no long life. LiMn2O4 is phase transformation at around human life temperature. One of the methods to overcome this problem is to stabilize the spinel structure by substituting Mn site ion in LiMn2O4 with transition metals (Al, Mg, Ti, Ni, Fe, etc.). LiFe0.1Mn1.9O4 spinel was synthesized from Li2CO3, Fe2O3 and MnO22 powder. The purpose of this study is to report the optimal condition of Fe doped LiFe0.1Mn1.9O4. Li2CO3, Fe2O3, and MnO2 mixture powder was heated up to 1173 K by TG-DTA. Li2CO3 was thermal decomposed, and CO2 gas evolved, and formed Li2O at about 800 K. LiFe0.1Mn1.9O4 was synthesized from a consecutive reaction Li2O, Fe2O3 and MnO2 at 723 ~ 1023 K. Active energy is calculated to 178 kJmol−1 at 723 ~ 1023 K. The X-ray powder diffraction pattern of the LiFe0.1Mn1.9O4 heated mixture powder at 1023 K for 32 h in air flow was observed.
LiFe0.1Mn1.9O4 jest obiecującym materiałem katodowym do zastosowania w bateriach litowo-jonowych z możliwością wielokrotnego ładowania. LiMn2O4 cieszy się dużym zainteresowaniem z powodu niskiego kosztu otrzymywania oraz niskiej toksyczności w porównaniu z innymi materiałami katodowymi typu LiCoO2 and LiNiO2 czy LiNiO2. Jednak LiMn2O4 posiada również wady: niską pojemność i krótką żywotność. Dodatkowo, przemiana fazowa LiMn2O4 zachodzi w temperaturze pokojowej. Jedną z metod rozwiązania tego problemu jest stabilizacja struktury spinelu poprzez podstawienie jonu Mn w sieci LiMn2O4 metalami przejściowymi (Al, Mg, Ti, Ni, Fe, itp.). Spinel LiFe0.1Mn1.9O4 syntezowano z proszków Li2CO3, Fe2O3 i MnO22. Celem badań było znalezienie optymalnych warunków syntezy spinelu LiFe0.1Mn1.9O4 domieszkowanego Fe. Mieszaninę proszków Li2CO3, Fe2O3 i MnO2 poddano analizie TG-DTA. W temperaturze 800 K Li2CO3 uległ rozkładowi termicznemu, w wyniku czego powstało CO2 i Li2O. LiFe0.1Mn1.9O4 zsyntezowano w wyniku reakcji następczej pomiędzy Li2O, Fe2O3 i MnO2 w temperaturze 723 ~ 1023 K. Energię aktywacji oszacowano na 178 kJmol−1 w zakresie temperatur 723 ~ 1023 K. Przeprowadzono także analizę XRD proszku LiFe0.1Mn1.9O4 wygrzewanego w 1023 K przez 32 godz. w warunkach przepływu powietrza.
Źródło:
Archives of Metallurgy and Materials; 2015, 60, 2A; 949-951
1733-3490
Pojawia się w:
Archives of Metallurgy and Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Fabrication Of YSZ Thin Film By Electrochemical Deposition Method And The Effect Of The Pulsed Electrical Fields For Morphology Control
Otrzymywanie cienkich warstw YSZ metodą osadzania elektrochemicznego oraz wpływ pulsacyjnych pól elektrycznych na kontrolę morfologii
Autorzy:
Fujita, T.
Saiki, A.
Hashizume, T.
Powiązania:
https://bibliotekanauki.pl/articles/356351.pdf
Data publikacji:
2015
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
yittria stabilized zirconia
thin film
electrochemical deposition method
pulsed electrical field
morphology control
tlenek itru stabilizowany tlenkiem cyrkonu
cienka warstwa
metoda osadzania elektrochemicznego
pulsacyjne pole elektryczne
kontrola morfologii
Opis:
In this study, surface morphology control ions in a precursor solution and patterning the YSZ film has been carried out during deposition of thin film from a precursor solution by applying the electrical field for deposition and the pulsed electrical field. The precursor solution was mixed them of ZrO(NO3)4, Y(NO3)3-6H2O into deionized water, and then was controlled nearly pH3 by adding NH3(aq). The thin film was deposited on the glass substrate of the minus electrode side by applying the electrical field of 3.0 V for 20 min. In addition, another pulsed voltage was applied to the electrical field along the perdicular direction to the film deposition direction. After annealing samples at 773 K for 6 h in air, the film was crystallized and obtained YSZ film. In the limited condition, the linear patterns of YSZ films due to the frequency of the applied electrical field were observed. It is expected that ions in a precursor solution are controlled by applying the pulsed voltage and the YSZ film is patterned on the substrate.
W niniejszej pracy cienkie warstwy YSZ otrzymywano metodą elektrochemiczną z roztworu. Morfologia otrzymanej warstwy była kontrolowana poprzez zastosowanie pulsacyjnego pola elektrycznego. Roztwór prekursora otrzymano poprzez zmieszanie ZrO(NO3)4, Y(NO3)3-6H2O w wodzie dejonizowanej, przy czym pH roztworu było utrzymywane na stałym poziomie (pH = 3) poprzez dodawanie NH3(aq). Na podłoże szklane naniesiono cienką warstwę po stronie ujemnej elektrody przykładając pole elektryczne o napięciu 3,0 V przez 20 min. Dodatkowo, przyłożono napięcie pulsacyjne do pola elektrycznego w kierunku prostopadłym do kierunku nanoszenia warstwy. Po kalcynacji próbek w 773 K przez 6 godz. w powietrzu, warstwa uległa krystalizacji i otrzymano warstwę YSZ. W tych warunkach zaobserwowano liniowe odwzorowanie warstw YSZ spowodowane częstotliwością przyłożonego pola elektrycznego. Przypuszcza się, że przyłożone napięcie pulsacyjne kontroluje jony w roztworze prekursora, co wpływa na strukturę warstwy YSZ.
Źródło:
Archives of Metallurgy and Materials; 2015, 60, 2A; 945-948
1733-3490
Pojawia się w:
Archives of Metallurgy and Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies