Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "X-ray" wg kryterium: Temat


Wyświetlanie 1-13 z 13
Tytuł:
The Enlargement of Type II Burst After Type III at AR 12522 on 16th March 2016 In Conjunction With Flare-Related Coronal Mass Ejections Event
Autorzy:
Husien, Nurulhazwani
Hamidi, Z. S.
Shariff, N. N. M.
Ali, M. O.
Zainol, N. H.
Sabri, S. N. U.
Monstein, C.
Powiązania:
https://bibliotekanauki.pl/articles/1178545.pdf
Data publikacji:
2017
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Coronal Mass Ejections
Sun
X-ray emission
Opis:
On 16th March 2016 the solar radio burst type II is recorded to appear on spectrograph after the type III formation. These two bursts related to the Coronal Mass Ejections (CMEs) event that recorded by the SOHO spacecraft several minutes before the formation of Type III on the spectrograph. It has been reported that the Type III burst a fast drift compared to the Type II burst. In this paper, the calculation has been proved that the type III burst has a higher drift rate compared to Type II. These two events of Type II and III burst also has been contributing to the formation of C class flare with magnitude of C2.2 It is also proven that the type III burst has a fast drift rate compared to type II burst. In this case, the type III has a fast drift rate of 81% compared to the type II burst. During this event, the active region AR 12522 erupted the C-class X-ray emission with magnitude of C2.2 contribute to these type III and II burst
Źródło:
World Scientific News; 2017, 70, 2; 230-240
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Enormous Eruption of 2.2 X-class Solar Flares on 10th June 2014
Autorzy:
Hamidi, Z. S.
Shariff, N. N. M.
Powiązania:
https://bibliotekanauki.pl/articles/411754.pdf
Data publikacji:
2014
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
sun
X-ray region
solar flare
active region
Opis:
The observational of active region emission of the Sun contain an critical answer of the time-dependence of the underlying heating mechanism. In this case, we investigate an X2.2 solar flare from a new Active Region AR2087 on the southeast limb of the Sun. The solar flare peaked in the X-rays is around 11:42 UT. It was found that the snapshot of this event from the Solar Dynamics Observatory (SDO) channel with the GOES X-ray plot overlayed. The flare is very bright causes by a diffraction pattern. We explore a parameter space of heating and coronal loop properties. Based on the wavelength, it shows plasma around 6 million Kelvin. At the same time, data from the NOAA issued an R3 level radio blackout, which is centered on Earth where the Sun is currently overhead at the North Africa region. This temporary blackout is caused by the heating of the upper atmosphere from the flare. The blackout level is now at an R1 and this will soon pass. Other than the temporary radio blackout for high frequencies centered over Africa this event will not have a direct impact on us. Until now, we await more data concerning a possible Coronal Mass Ejections (CMEs) but anything would more than likely not head directly towards Earth. An active region AR2087 just let out an X1.5 flare peaking at 12:52 UT. This shows plasmas with temperatures up to about 10 Million Kelvin. This event is considered one of the massive eruption of the Sun this year.
Źródło:
International Letters of Chemistry, Physics and Astronomy; 2014, 17, 3; 249-257
2299-3843
Pojawia się w:
International Letters of Chemistry, Physics and Astronomy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Development of the X2-Class of flares with Presence of Type IV burst and Single Type III burst in Low Frequency (20-85 MHz) on 5th May 2015
Autorzy:
Sabri, S. N. U.
Hamidi, Z. S.
Shariff, N. N. M.
Zainol, N. H.
Syazwan, Nabilah Ramli
Ali, Marhana Omar
Husien, Nurulhazwani
Monstein, C.
Powiązania:
https://bibliotekanauki.pl/articles/1191466.pdf
Data publikacji:
2016
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Sun
solar burst
III
IV
X-ray region
solar flare
Active Region 2335
Opis:
The plasma-magnetic field interaction in the solar corona is caused exploration of suprathermal electron population have been made to study about the phenomena solar radio burst. This burst only took about approximately 2 minutes to produce X2- class of solar flares which occurred at 22:10 UT till 22:11UT. The wave-wave interaction and wave-particle interaction influenced the characteristic structures of the emission. The CALLISTO spectrometer has been used to detect and record the Type IV and Type III occurred during 22:07UT till 22:11 UT and it only took about 3.30 minutes to occur. The range of frequency of this burst 20-85 MHz and data is from ROSWELL-NM observatory. With the presence of the data, we aim to determine the causes of the Solar Radio Burst Type IV produced Type III burst in several minutes and describe briefly about the formation and dynamics of solar radio burst type IV occurred on active region, AR2335 which also produced beta-gamma magnetic field. This event showed the strong pulsation and a broadband pattern with details about Type IV burst, then Type III burst present in fast drift. AR 2335 is the most active region and produced X2-class of solar flares which has solar wind speed about 361.6km/second and proton density about 4.3 protons/cm3 in the solar corona. AR 2335 harbor energy for X2-class from 6-H to 24-H observation on X-Ray solar flares have been recorded. The data showed that it has a strong energy electrons presence during the burst occurred in the active region and this class of solar flares are more powerful which has potential to cause radio blackout and long lasting space weather storms. As the conclusion, the sun activity showed on 5th May 2015 has quasi-periodic pulsation that has continuum and drift in lower frequency. The temperature that corona took to extend from the top of a narrow transition region still be as mysterious properties.
Źródło:
World Scientific News; 2016, 40; 188-198
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A Case Study of Explosion A Single Solar Burst Type III and IV Due to Active Region AR1890
Autorzy:
Hamidi, Z. S.
Ibrahim, M. B.
Shariff, N. N. M.
Monstein, C.
Powiązania:
https://bibliotekanauki.pl/articles/412554.pdf
Data publikacji:
2014
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
sun
solar burst
III
IV
radio region
X-ray region
solar flare
active region
Opis:
Using data from a BLEIN Callisto site, we aim to provide a comprehensive description of the synopsis formation and dynamics of a a single solar burst type III and IV event due to active region AR1890. This eruption has started since 14:15 UT with a formation of type III solar burst. To investigate the importance of the role of type III solar burst can potentially form a type IV solar burst, the literature review of both bursts is outlined in detailed. The orientation and position of AR1890 make the explosion of a class C-solar flare is not directly to the Earth. Nevertheless, it is clear that the interactions of others sunspots such as AR1893,AR1895,AR1896, AR1897 and AR1898 should be studied in detail to understand what makes the type III burst formed before the type IV solar burst.
Źródło:
International Letters of Chemistry, Physics and Astronomy; 2014, 19, 2; 171-180
2299-3843
Pojawia się w:
International Letters of Chemistry, Physics and Astronomy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Heart-shape Active Region 2529 Producing Strong M6.7 class Solar Flare and Gradual Coronal Mass Ejections
Autorzy:
Hamidi, Z. S.
Omar Ali, M.
Nurul, Hazwani Husien
Sabri, S. N. U.
Zainol, N. H.
Shariff, N. N. M.
Monstein, C.
Powiązania:
https://bibliotekanauki.pl/articles/1179601.pdf
Data publikacji:
2017
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Gradual Coronal Mass Ejections
Heart-shape active region
Sun
X-ray region
solar flare
Opis:
The Centre of the Sun is very important to be study because this layer is where the nuclear reaction will be occurred. During large event pre-flare usually continues a few minutes and followed by impulsive phase about 3 to 10 minutes. Solar storms such as solar flare and Coronal Mass Ejections are frequently occurred on the area of the Sun that have strong magnetic field or known as active region The release of the stored free magnetic energy that probably drives a CME can take many forms including (predominantly) mechanical in the form of an expanding CME and erupting filament, electromagnetic emission in the form of a flare, and also in the acceleration of energetic particles, magnetic field reconfiguration and bulk plasma motion. In this study, the data of active region of the Sun was taken from official website of the Langkawi National Observatory. The image of the active region was observed by using 11-inch Celestron telescope with solar filter. This data confirms that there was a strong M class of solar flare during the day due to eruption of AR 2529 was occurred on 18th of April. From the x-ray flux data also, it can be observed that few days before M6.7 class solar flare occurred, there were several C classes of flare. The evolution of small AR 2529 to a big heart-shape forms an eruption that producing strong M6.7 class of flare and three gradual CMEs. This strong flare caused significant impact around the high technologies of Pacific Ocean by fading the signal at frequencies below 15 MHz.
Źródło:
World Scientific News; 2017, 74; 181-193
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Geo-effective Disturbances from the “Beta-Gamma-Delta” Magnetic Fields on Active Region AR 2403
Autorzy:
Sabri, S. N. U.
Hamidi, Z. S.
Shariff, N. N. M.
Monstein, C.
Zainol, N. H.
Ali, M. Omar
Hussien, Nurul Hazwani
Powiązania:
https://bibliotekanauki.pl/articles/1192069.pdf
Data publikacji:
2016
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Sun
Solar Radio Burst Type IV
X-ray region
Solar flare
active region AR 2403
Opis:
This moving solar radio burst type IV, which lies in between 980 – 1260 MHZ was observed using Compound Astronomical Low-Cost Low- Frequency Instrument for Spectroscopy and Transportable Observatory (CALLISTO) spectrometer and will discussed in detail. CALLISTO system was used and the data were recorded. From BLEN5M’s Radio Flux Density data, it shown that a brief description of the formation of a dynamic formation of solar radio burst type IV due to an active region, AR 2403. This event proved that solar radio burst type IV has a broadband continuum features and has strong pulsations in some range of time. In this event it was took about 8 minutes and it can be high in possibility solar flare and CMEs event followed due to this event. AR 2403 remained active and produced an X- class solar flares and it showed “Beta- Gamma-Delta” magnetic field that gives solar flares which can make geo-effective disturbance to our earth satellite and we have to investigate how plasma – magnetic field in the solar corona which can produce suprathermal electron pulsation about 8 minutes. In this event, it has solar wind speed in 364.8 km/sec and solar wind density in 11.0 protons/cm3.
Źródło:
World Scientific News; 2016, 37; 1-11
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Development of Long Series of Quasi-Periodic Pulsation in Active Region AR 2297
Autorzy:
Sabri, S. N. U.
Hamidi, Z. S.
Shariff, N. N. M.
Monstein, C.
Powiązania:
https://bibliotekanauki.pl/articles/1194014.pdf
Data publikacji:
2015
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
IV
Sun
X-ray region
active region AR2222
radio region
solar burst
solar flare
Opis:
This phenomena allow us to explore about suprathermal electron population that produced by plasma-magnetic field interactions in the solar corona about tens of minutes.The characteristics of the structures of the emission is influenced by wave-particle interaction and wave-wave interaction. The Callisto spectrometer recorded broadband of solar radio burst Type IV from 250-900 MHz. Using data from BLEN7M observatory, we aim to provide inclusive description about the formation and dynamics of solar radio burst type IV due to active region AR2297. About five minutes, the events revealed strong pulsations and “broad patterns” with details of solar radio burst type III with presence of CMEs. AR2297 is the most active region which produced X2-Class solar flares. The speeds of solar wind exceeds 376.0 km/second with 4.0 g/cm3 density of proton in the solar corona. The radio flux shows 121 SFU. Furthermore, there are two active regions, AR2298 and AR2299 also presents in the X2-class solar flares. Active region AR2297 have unstabe ‘Beta-Gamma-Delta’ magnetic fields thet habor energy for M class to X2- class eruptions. As a conclusion, we conclude that Sun activities are more active to achieve maximum cycle at the end 2015. Solar flares on 11th of March 2015 showed long series of quasi-periodic pulsation that deeply modulate a continuum and its drifting toward lower frequency. The corona extends from the top of a narrow transition region to Earth and has a temperature millions of degrees that still mysterious properties.
Źródło:
World Scientific News; 2015, 9; 59-69
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Formation of Fundamental Structure of Solar Radio Burst Type II Due X6.9 Class Solar Flare
Autorzy:
Zainol, N. H.
Hamidi, Z. S.
Shariff, N. N. M.
Ali, Marhana Omar
Husien, Nurulhazwani
Sabri, S. N. U.
Monstein, C.
Powiązania:
https://bibliotekanauki.pl/articles/1190115.pdf
Data publikacji:
2016
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Sun
solar burst
type II
radio region
X-ray region
solar flare
Coronal Mass Ejections (CMEs)
Opis:
A vigorous solar flare event marked on the spectrometer of the CALLISTO data, being one of the highest solar flare event that successfully detected. The formation of solar burst type II in meter region and their associated with X6. 9-class solar flares have been reported. The burst has been observed at the Blein Obsevatory, Switzerland, which detected by the Compound Astronomical Low-cost Low-frequency Instrument for Spectroscopy and Transportable Observatory (CALLISTO) system in the range of 170-870 MHz in the two polarizations of left and right circular polarization. It occurred between 08:01 UT to 08:08 UT within 7 minutes. The Compound Astronomical Low-cost Low-frequency Instrument for Spectroscopy and Transportable Observatory CALLISTO spectrometer is a solar dedicated spectrometer system that has been installed all over the world to monitor the Sun activity in 24 hours. The growth of this burst is often accompanied by abundance enhancement of particles which may take the form of multiple independent drifting bands or other forms of fine structure. Due to the results, the drift rate of this burst is 85.71 MHz s-1, which is considered as a fast drift rate. The burst detected using CALLISTO also being compared to results detected by X-ray GOES data. Both different electromagnetic spectrum shows the exact time. The observations of the burst being discussed in details.
Źródło:
World Scientific News; 2016, 35; 30-43
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Relativistic Energy Associated with a Moving Fiber Burst Type μIV Associated with The Class A Solar Prominence
Autorzy:
Hamidi, Z. S.
Norsham, N. A. M.
Shariff, N. N. M.
Monstein, C.
Powiązania:
https://bibliotekanauki.pl/articles/1194133.pdf
Data publikacji:
2016
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Coronal Mass Ejections (CMEs)
Sun
X-ray region
solar burst
solar flare
type IV radio region
Opis:
The relativistic energy electron emission is found to occur only during proton events. Solar prominences usually occur in loop shape and can last for weeks or months. This event allows us to investigate the electron density and drift rate of solar burst type IV During 21st September 2015. During that time the Sun has the highest number of sunspots. The radio sources responsibly for Ivm appear to expand spherically through the solar corona after eject on y solar flare. This event shows a strong radiation in radio region, but not in X-ray region. This burst intense radio phenomena that follow with solar flares. It has a wide band structure from 1412-1428 MHz. It can be considered as an intermediate f drift burst (IMDs). This fiber burst has a negative drift rate where the drift is interpreted by the group velocity of the whistler-mode waves. Their bandwidth is approximately 2% of the emission frequency. The are accompanied a parallel-drift absorption band in the background continuum radiation. The occurrence of the event is interesting in many aspects which is also in ZSIS site. From the dynamic spectra of the CALLISTO, it can be observed that there a moving type IV burst. This burst appears is single SRBT III for approximately 16 minutes at 708UT till 716UT. This burst duration is longer compared to the other events. It can be considered as a Ivμ because it begins at the same time as the explosive phase of solar flare. The solar optical, radio and X-ray emission associated with these various energetic particle emissions as well as the propagation characteristics of each particle species are examined in order to study the particle acceleration and emission mechanisms in a solar flare. At the same time, the number of particles traveled a given path in reconnecting area falls exponentially with increase of this path because of losses owing to a leaving of particles the acceleration volume due to drifts.
Źródło:
World Scientific News; 2016, 57; 11-20
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An Analysis of Solar Burst Type II, III, and IV and Determination of a Drift Rate of a Single Type III Solar Burst
Autorzy:
Hamidi, Z. S.
Ibrahim, M. B.
Shariff, N. N. M.
Monstein, C.
Powiązania:
https://bibliotekanauki.pl/articles/411732.pdf
Data publikacji:
2014
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
sun
solar burst
type II,III,IV
radio region
X-ray region
solar flare
active region
Opis:
The main feature of solar radio type II, III and IV burst is outlined. In this event there are three combinations of bursts that related to the solar flare phenomenon on 6th July 2012. This event is one of good example to observe how far the influence of type II burst could impact the formation of type IV burst and III solar bursts. At first stage, it was observed that a sub-type of H burst form within 2 minutes before type IV solar burst form. The type IV burst is due to the eruption of active region AR 1515 with a fine structure (FS). We used a Blein CALLISTO data in this case. Further analysis also showed that the total energy of the burst are in the range of 4.875 × 10-25 J to 8.48 × 10-25 J and plasma frequency is equal to 1.24 × 104 Hz. Therefore, we could say that in this case, before the solar burst type III occurred, the ejection of CMEs already ejected.
Źródło:
International Letters of Chemistry, Physics and Astronomy; 2014, 19, 2; 160-170
2299-3843
Pojawia się w:
International Letters of Chemistry, Physics and Astronomy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An Analysis of the Electron Density and Drift Rate of Solar Burst Type III During 13th of May 2015
Autorzy:
Ali, M. O.
Hamidi, Z. S.
Shariff, N. N. M.
Monstein, C.
Powiązania:
https://bibliotekanauki.pl/articles/1192997.pdf
Data publikacji:
2016
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Coronal Mass Ejections (CMEs)
Sun
X-ray region
radio region
solar burst
solar flare
type III
Opis:
During 13th of May 2015, the solar wind is very high velocity, which is 733 kms-1 as compared to 367.5 kms-1. It is believed that the plasma–magnetic field interactions in the solar corona can produce suprathermal electron populations over periods from tens of minutes to several hours, and the interactions of wave-particle and wave-wave lead to characteristic fine structures of the emission. An intense and broad solar radio burst type II was recorded by CALLISTO spectrometer from 20-85 MHz. Using data from a the Blein observatory, the complex structure of solar burst type III can also be found in the early stage of the formation of type III solar burst type event due to active region AR 12339. The drift rate of solar burst type III exceeds 1.0 MHz/s with 6.318 x1012 e/m3 a density of electron in the solar corona. There were also 2 groups of solar radio burst type III were observed. This CME was detected at 08:36 UT which is 1and ½ hour after the solar burst detected. This event shows a strong radiation in radio region, but not in X-ray region.
Źródło:
World Scientific News; 2016, 31; 1-11
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Solar Burst Type IV Signature Associated with Solar Prominences on 20th January 2016
Autorzy:
Hamidi, Z. S.
Hamzah, N.
Shariff, N. N. M.
Monstein, C.
Powiązania:
https://bibliotekanauki.pl/articles/1178518.pdf
Data publikacji:
2017
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Coronal Mass Ejections (CMEs)
Sun
X-ray region
solar burst
solar flare
type IV radio region
Opis:
Proceeding from close association between solar eruptions, flare and CMEs, we analyze between burst at 980 MHz to 1270 MHz, recorded at the Blein, Switzerland on 20th January 2016. This burst indicates the emission radiation from the Sun from numerous high energy electrons in active region AR2484 and AR2487 forming a large prominence in that particular area. Solar prominences usually occur in loop shape and can last for weeks or months. This event allows us to investigate the electron density and drift rate of solar burst type IV During that time the Sun has the moderate number of sunspots with 55.The radio sources responsibly for IV appear to expand spherically through the solar corona after eject on y solar flare. This event shows a strong radiation in radio region, but not in X-ray region. This burst intense radio phenomena that follow with solar flares. It has a wide band and fine structure. It can be considered as an intermediate fast drift burst (IMDs). This fiber burst has a negative drift rate where the drift is interpreted by the group velocity of the whistler-mode waves. This burst appears is single SRBT III for approximately within 7 minutes with starting time is 8.23 UT. This burst duration is longer compared to the other events. It can be considered as a IV because it begins at the same time as the explosive phase of solar flare. The solar optical, radio and X-ray emission associated with these various energetic particle emissions as well as the propagation characteristics of each particle species are examined in order to study the particle acceleration and emission mechanisms in a solar flare. At the same time, the number of particles traveled a given path in reconnecting area falls exponentially with the increase of this path because of losses owing to a leaving of particles the acceleration volume due to drift.
Źródło:
World Scientific News; 2017, 70, 2; 111-121
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Tendencies Group Type III Burst Form Type II Burst During Low activity
Autorzy:
Hamidi, Z. S.
Mokthtar, Fatin Nabila
Shariff, N. N. M.
Ali, Marhana Omar
Husien, Nurulhazwani
Sabri, S. N. U.
Zainol, N. H.
Monstein, C.
Powiązania:
https://bibliotekanauki.pl/articles/1191365.pdf
Data publikacji:
2016
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Coronal Mass Ejections (CMEs)
X-ray region
radio region
solar burst
sun
sun type II
sun type III
Opis:
Using the e-CALLISTO network radio observations on 1st June 2015, we present an analysis of the complex type III and type II solar radio bursts during low activity. This event occurred on 1st July 2015 at 13:52 UT (complex solar burst type III) and 13:40 UT - 13:44 UT (solar burst type II). Solar burst type detected at (i) BIR, (ii) BLENSW, (iii) Essen, (iv) Glascow (v) Osra, (vi) Rwanda. The spectral shape consists of high flux densities at meter wavelengths. The energy going into plasma heating during each flare was estimated by computing the time evolution of the energy content of the thermal plasma and obtaining the peak value. This constitutes a lower limit to the thermal energy, since it does not account for the cooling of the plasma prior to this time nor to any heating at later times. It is also believed that the meter wavelength branch of the this type III spectrum may be attributable to second-phase accelerated electrons to form type II burst. There are four sunspots of the active regions (AR2355, AR2356, AR2357, and AR2358) during this event. The solar wind recorded during the event is 342.4 km/s and the density of the proton recorded is 4.1 protons/cm3. Moreover, the are some evidence that radio-quiet CMEs mostly came from the edges of the sun. The main goal of this study was to determine whether is there any possibilities that the radio burst can be formed even the Sun is at low activity and this event is one of the candidate events.
Źródło:
World Scientific News; 2016, 34; 121-134
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-13 z 13

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies