Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "intelligent learning systems" wg kryterium: Temat


Wyświetlanie 1-1 z 1
Tytuł:
Users-centric adaptive learning system based on interval type-2 fuzzy logic for massively crowded e-learning platforms
Autorzy:
Almohammadi, K.
Hagras, H.
Alghazzawi, D.
Aldabbagh, G.
Powiązania:
https://bibliotekanauki.pl/articles/91622.pdf
Data publikacji:
2016
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
Type-2 Fuzzy Logic systems
e-learning
intelligent learning environments
Opis:
Technological advancements within the educational sector and online learning promoted portable data-based adaptive techniques to influence the developments within transformative learning and enhancing the learning experience. However, many common adaptive educational systems tend to focus on adopting learning content that revolves around pre-black box learner modelling and teaching models that depend on the ideas of a few experts. Such views might be characterized by various sources of uncertainty about the learner response evaluation with adaptive educational system, linked to learner reception of instruction. High linguistic uncertainty levels in e-learning settings result in different user interpretations and responses to the same techniques, words, or terms according to their plans, cognition, pre-knowledge, and motivation levels. Hence, adaptive teaching models must be targeted to individual learners’ needs. Thus, developing a teaching model based on the knowledge of how learners interact with the learning environment in readable and interpretable white box models is critical in the guidance of the adaptation approach for learners’ needs as well as understanding the way learning is achieved. This paper presents a novel interval type-2 fuzzy logic-based system which is capable of identifying learners’ preferred learning strategies and knowledge delivery needs that revolves around characteristics of learners and the existing knowledge level in generating an adaptive learning environment. We have conducted a large scale evaluation of the proposed system via real-word experiments on 1458 students within a massively crowded e-learning platform. Such evaluations have shown the proposed interval type-2 fuzzy logic system’s capability of handling the encountered uncertainties which enabled to achieve superior performance with regard to better completion and success rates as well as enhanced learning compared to the non-adaptive systems, adaptive system versions led by the teacher, and type-1-based fuzzy based counterparts.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2016, 6, 2; 81-101
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies