Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "wymiana ciepła" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Influence of heat transfer boundary conditions on the temperature field of the continuous casting ingot
Analiza wpływu warunków brzegowych na pole temperatury wlewka ciągłego
Autorzy:
Malinowski, Z.
Telejko, M.
Hadała, B.
Powiązania:
https://bibliotekanauki.pl/articles/354594.pdf
Data publikacji:
2012
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
wymiana ciepła
warunki brzegowe
odlewanie ciągłe
heat transfer
boundary conditions
continuous casting
Opis:
Steel solidification in the continuous casting process starts in the mould, follows in the secondary cooling zones and finishes under air cooling conditions. Casting technology requires very effective heat transfer from the strand surface to the water cooling system. Design and control of the casting process is possible if the ingot temperature is known with a suitable accuracy. Measurements of the ingot temperature are complicated and expensive and due to these reasons are not common in practice. Numerical simulation have to be used to provide data which can be used to design and control of the ingot solidification. In the case of the temperature field modeling heat transfer boundary conditions have to be specified. In the literature wide range of formulas can be found and this may lead to essential errors in the heat transfer coefficient determination. In the paper the selected formulas have been employed in the finite element model to compute the ingot temperature field in the mould and secondary cooling zones. It has been shown that inaccurate determination of the heat flux transferred from the ingot surface to the mould leads to essential errors in the determination of the ingot temperature and solidification. Therefore empirical formulas or complex heat transfer models at ingot - mould interface ought to be employed in finite element models.
Krzepnięcie stali w procesie ciągłego odlewania zachodzi w krystalizatorze i strefie chłodzenia wtónego. Technologia narzuca konieczność bardzo intensywnego odprowadzania ciepła od ciekłej stali, warstwy krzepnącej i zakrzepłej stali. Do prawidłowego prowadzenia odlewania konieczna jest znajomość wielu parametrów technologicznych, z których jednym z najważniejszych jest temperatura wlewka ciągłego. Bezpośrednie pomiary charakterystycznych dla COS wielkości w czasie krzepnięcia i stygnięcia wlewka są bardzo kosztowne oraz czasochłonne i z tych powodów nie znajdują szerszego zastosowania praktycznego. Najczęściej dane do analizy wpływu różnych parametrów wejściowych na proces krzepnięcia dostarczają symulacje numeryczne. Do prawidłowego ich wykonania potrzebne jest jednak określenie parametrów procesu. W przypadku temperatury bardzo ważną rolę odgrywają warunki brzegowe opisujące wymianę ciepła między powierzchnią wlewka ciągłego i otoczeniem. Ich niepoprawne przyjęcie może skutkować niedokładnym wyznaczeniem pola temperatury, a w konsekwencji błędami obliczeń pozostałych parametrów procesu. W literaturze często spotykane są różne formuły pozwalające na wyliczenie współczynnika przejmowania ciepła lub gęstości strumienia ciepła na powierzchni wlewka ciągłego. W pracy przedstawiono przykłady obliczeń pola temperatury dla wybranych zależności opisujących wymianę ciepła wlewka z otoczeniem w strefie krystalizatora i chłodzenia wtórnego. Przedstawiono wyniki symulacji oraz ich analizę. Obliczenia wykonano z zastosowaniem autorskiego modelu matematycznego i numerycznego wymiany ciepła oraz oprogramowania wykorzystującego metodę elementów skończonych.
Źródło:
Archives of Metallurgy and Materials; 2012, 57, 1; 325-331
1733-3490
Pojawia się w:
Archives of Metallurgy and Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wpływ dogrzewania i ekranów cieplnych na zmianę temperatury pasma walcowanego w linii LPS
Influence of the radiation shields and reheating on the strip temperature variation in the LPS rolling line
Autorzy:
Hadała, B.
Malinowski, Z.
Cebo-Rudnicka, A.
Gołdasz, A.
Powiązania:
https://bibliotekanauki.pl/articles/182415.pdf
Data publikacji:
2012
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Metalurgii Żelaza im. Stanisława Staszica
Tematy:
wymiana ciepła
ekrany cieplne
walcowanie płaskowników
heat transfer
radiation shields
rolling of flats
Opis:
W pracy przedstawiono modele matematyczne opisujące wymianę ciepła w czasie nagrzewania wsadu w komorowym piecu elektrycznym oraz podczas chłodzenia pasma osłoniętego ekranem cieplnym. Rozwiązanie uzyskano w przekroju poprzecznym pasma. Modele matematyczne dostosowano do warunków nagrzewania i walcowania płaskowników w linii LPS. Model nagrzewania wsadu w elektrycznym piecu komorowym opracowano na podstawie radiacyjnej wymiany ciepła między nagrzewanym materiałem i ścianami pieca. Model wymiany ciepła pasma osłoniętego ekranem cieplnym opracowano dla ekranu zbudowanego z trzech warstw: wewnętrznej osłony metalowej, warstwy izolującej i zewnętrznej osłony metalowej. Modelowano dwa ekrany: jeden z osłoną z blachy stalowej i drugi z osłoną wykonaną z blachy aluminiowej. Model wymiany ciepła pasma osłoniętego ekranem cieplnym może być zastosowany również dla innych linii walcowania ciągłego slabów i blach.
The numerical model describing the heat transfer during charge heating in the electric chamber furnace has been presented. Heat transfer models for hot rolling were supplemented by the boundary conditions for cooling of strand covered by the thermal shield. The solution was obtained in the cross section of the rolled material. The heat transfer models were adjusted to the technical specifi cations of the LPS rolling line. The heat transfer model for charge heating was developed based on the radiation heat transfer between the charge and the furnace wall surfaces. Heat transfer model for cooling of the rolled strand covered with three layer thermal shield was developed. Two types of shields were studied: with steel sheet shield and with aluminum sheet shield. The heat transfer model for rolled strand covered by the thermal shield is also suitable for other rolling lines.
Źródło:
Prace Instytutu Metalurgii Żelaza; 2012, T. 64, nr 1, 1; 83-88
0137-9941
Pojawia się w:
Prace Instytutu Metalurgii Żelaza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Model numeryczny wymiany ciepła w procesach walcowania wlewków półprzemysłowych w linii LPS i wlewków ciągłych w walcowniach blach i prętów
Numerical model of heat transfer in the hot rolling process of semi-industrial ingots in the LPS line and continuously cast semi-products rolled in industrial plate and bar rolling mills
Autorzy:
Cebo-Rudnicka, A.
Malinowski, Z.
Hadała, B.
Gołdasz, A.
Powiązania:
https://bibliotekanauki.pl/articles/182410.pdf
Data publikacji:
2012
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Metalurgii Żelaza im. Stanisława Staszica
Tematy:
wymiana ciepła
walcowanie płaskowników
metoda elementów skończonych
heat transfer
rolling of bars and flats
finite element method
Opis:
W pracy przedstawiono model numeryczny, opisujący przewodzenie ciepła w prętach i płaskownikach walcowanych w linii LPS i innych układach ciągłego walcowania. Rozwiązanie uzyskano w przekroju poprzecznym płaskownika lub pręta. W modelu uwzględniono zmianę kształtu przekroju bryły w wyniku odkształcenia plastycznego. Zmianę kształtu wprowadzono przez transformację przekroju poprzecznego pręta lub płaskownika. W modelu wymiany ciepła uwzględniono ciepło odkształcenia plastycznego, ciepło tarcia na powierzchni styku odkształcanego materiału z walcami. Uwzględniono również efekty cieplne przemian fazowych. Model numeryczny i oprogramowanie testowano w warunkach linii LPS.
The numerical model describing heat transfer in bars and slabs rolled in LPS line and the other rolling systems has been presented in the paper. The solution was obtained at the cross section of the rolled material. The change of workpiece shape caused by plastic deformation was considered. The workpiece shape deformation was introduced by transformation of the cross section of the rolled bar or fl at. The heat of plastic deformation in the deformation zone and the heat of friction at the material/roll interface have been taken into account. Also the latent heat of phase transformation was considered. Numerical model and developed software have been tested at the LPS line.
Źródło:
Prace Instytutu Metalurgii Żelaza; 2012, T. 64, nr 1, 1; 30-34
0137-9941
Pojawia się w:
Prace Instytutu Metalurgii Żelaza
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies