Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Guo, X.-Y." wg kryterium: Wszystkie pola


Wyświetlanie 1-2 z 2
Tytuł:
Electronic System Fault Diagnosis with Optimized Multi-kernel SVM by Improved CPSO
Diagnoza uszkodzeń układu elektronicznego z wykorzystaniem Wielojądrowej Maszyny Wektorów Nośnych (SVM) zoptymalizowanej przy pomocy poprawionego algorytmu CPSO
Autorzy:
Guo, Y. M.
Wang, X. T.
Liu, C.
Zheng, Y. F.
Cai, X. B.
Powiązania:
https://bibliotekanauki.pl/articles/300922.pdf
Data publikacji:
2014
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
układ elektroniczny
diagnoza uszkodzeń
maszyna wektorów nośnych
optymalizacja metodą chaosu-roju cząstek
funkcja wielojądrowa
electronic system
fault diagnosis
support vector machine (SVM)
chaos particles swarm optimization
multi-kernel
Opis:
Bezpieczeństwo pracy układów elektronicznych stało się kluczowym zagadnieniem w odniesieniu do złożonych układów o wysokiej niezawodności. Obecnie coraz większy nacisk kładzie się na trafność diagnozy uszkodzeń układów elektronicznych. Na podstawie charakterystyki diagnozy uszkodzeń układów elektronicznych, opracowaliśmy model wielokryterialnej klasyfikacji SVM pozwalający osiągnąć lepszą trafność diagnozy uszkodzeń. Model wykorzystuje funkcję wielojądrową składającą się z kilku bazowych funkcji jądrowych pozwalającą na zwiększenie interpretowalności modelu klasyfikacyjnego. Aby zoptymalizować działanie modelu wielokryterialnej klasyfikacji SVM wykorzystującego funkcję wielojądrową, udoskonaliliśmy algorytm Optymalizacji Metodą Chaosu-Roju Cząstek (CPSO), co pozwoliło osiągnąć optymalne parametry SVM i funkcji wielojądrowej. W poprawionym algorytmie CPSO wzmocniono różnorodność wyszukiwania poprzez wykorzystanie chaotycznej sekwencji generowanej przez zmodyfikowaną mapę tent, a także włączono do standardowego algorytmu PSO efektywną metodę pozwalającą uniknąć przedwczesnej stagnacji oraz uzyskać globalne wartości optymalizacji. Wyniki symulacji diagnozy uszkodzeń systemu elektronicznego pokazują, że proponowany system optymalizacji może być wykorzystywany jako skuteczna metoda umożliwiająca znaczne zwiększenie trafności diagnozy uszkodzeń z wykorzystaniem wielojądrowej SVM.
Electronic systems’ safety operation has become a key issue to complex and high reliability systems. Now more emphasis has been laid on the accuracy of electronic system fault diagnosis. Based on the characteristics of the electronic system fault diagnosis, we design a multi-classification SVMs model to attain better fault diagnosis accuracy, which utilizes multi-kernel function consisting of several basis kernel functions to enhance the interpretability of the classification model. In order to optimize the performance of multi-classification SVMs with multi-kernel, we improve the Chaos Particles swarm Optimization (CPSO) algorithm to achieve the optimum parameters of SVMs and the multi-kernel function. For the improved CPSO algorithm, a modified Tent Map chaotic sequence is used to strengthen the search diversity, and an effective method is embedded to the stander PSO algorithm which can ensure to avoid premature stagnation and obtain the global optimization values. The fault diagnosis simulation results of an electronic system show the proposed optimization scheme is a feasible and effective method and it can significantly improve the fault diagnosis accuracy of the multi-kernel SVM.
Źródło:
Eksploatacja i Niezawodność; 2014, 16, 1; 85-91
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Weighted prediction method with multiple time series using multi-kernel least squares support vector regression
Metoda ważonej predykcji wielokrotnych szeregów czasowych z wykorzystaniem wielojądrowej regresji wektorów wspierających metodą najmniejszych kwadratów (LS-SVR)
Autorzy:
Guo, Y. M.
Ran, C. B.
Li, X. L.
Ma, J. Z.
Zhang, L.
Powiązania:
https://bibliotekanauki.pl/articles/302067.pdf
Data publikacji:
2013
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
szereg czasowy
predykcja ważona
regresja wektorów wspierających metodą najmniejszych kwadratów (LS-SVR)
uczenie wielojądrowe (MKL)
time series
weighted prediction
least squares support vector regression (LS-SVR)
multiple kernel learning (MKL)
Opis:
Least squares support vector regression (LS-SVR) has been widely applied in time series prediction. Based on the case that one fault mode may be represented by multiple relevant time series, we utilize multiple time series to enrich the prediction information hiding in time series data, and use multi-kernel to fully map the information into high dimensional feature space, then a weighted time series prediction method with multi-kernel LS-SVR is proposed to attain better prediction performance in this paper. The main contributions of this method include three parts. Firstly, a simple approach is proposed to determine the combining weights of multiple basis kernels; Secondly, the internal correlative levels of multiple relevant time series are computed to present the different contributions of prediction results; Thirdly, we propose a new weight function to describe each data's different effect on the prediction accuracy. The experiment results indicate the effectiveness of the proposed method in both better prediction accuracy and less computation time. It maybe has more application value.
Regresja wektorów wspierających metodą najmniejszych kwadratów (LS-SVR) jest szeroko stosowana w predykcji szeregów czasowych. Opierając się na fakcie, że jeden rodzaj niezdatności może być reprezentowany przez wiele relewantnych szeregów czasowych, w niniejszej pracy wykorzystano wielokrotne szeregi czasowe do wzbogacenia informacji predykcyjnych ukrytych w szeregach czasowych oraz posłużono się metodą uczenia wielojądrowego (multi-kernel) w celu mapowania informacji do wysoko wymiarowej przestrzeni cech, a następnie zaproponowano metodę ważonej predykcji wielokrotnych szeregów czasowych z wykorzystaniem wielojądrowej regresji LS-SVR służącą osiągnięciu lepszej wydajności prognozowania.Metoda składa się z trzech głównych części. Po pierwsze, zaproponowano prosty sposób określania łącznej wagi wielu jąder podstawowych. Po drugie, obliczono wewnętrzne poziomy korelacyjne wielokrotnych szeregów czasowych w celu przedstawienia różnego udziału wyników prognozowania. Po trzecie, zaproponowano nową funkcję wagi do opisu różnego wpływu poszczególnych danych na trafność predykcji. Wyniki doświadczenia wskazują na skuteczność proponowanej metody zarówno jeśli chodzi o lepszą trafność predykcji jak i krótszy czas obliczeniowy. Proponowane rozwiązanie ma potencjalnie dużą wartość aplikacyjną.
Źródło:
Eksploatacja i Niezawodność; 2013, 15, 2; 188-194
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies