Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "PDEs" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Optimal control problems without terminal constraints: The turnpike property with interior decay
Autorzy:
Gugat, Martin
Lazar, Martin
Powiązania:
https://bibliotekanauki.pl/articles/24200685.pdf
Data publikacji:
2023
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
optimal control
turnpike property
system with hyperbolic PDEs
interior decay
sterowanie optymalne
układ hiperboliczny
rozkład wewnętrzny
Opis:
We show a turnpike result for problems of optimal control with possibly nonlinear systems as well as pointwise-in-time state and control constraints. The objective functional is of integral type and contains a tracking term which penalizes the distance to a desired steady state. In the optimal control problem, only the initial state is prescribed. We assume that a cheap control condition holds that yields a bound for the optimal value of our optimal control problem in terms of the initial data. We show that the solutions to the optimal control problems on the time intervals [0, T] have a turnpike structure in the following sense: For large T the contribution to the objective functional that comes from the subinterval [T/2, T], i.e., from the second half of the time interval [0, T], is at most of the order 1/T. More generally, the result holds for subintervals of the form [r T,T], where r ∈ (0, 1/2) is a real number. Using this result inductively implies that the decay of the integral on such a subinterval in the objective function is faster than the reciprocal value of a power series in T with positive coefficients. Accordingly, the contribution to the objective value from the final part of the time interval decays rapidly with a growing time horizon. At the end of the paper we present examples for optimal control problems where our results are applicable.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2023, 33, 3; 429--438
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Exact controllability of a string to rest with a moving boundary
Autorzy:
Gugat, Martin
Powiązania:
https://bibliotekanauki.pl/articles/970107.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
pde constrained optimization
optimal control of pdes
optimal boundary control
wave equation
analytic solution
exact controllability
moving boundaries
mining elevator
Opis:
We consider the problem of steering a finite string to the zero state in finite time from a given initial state by controlling the state at one boundary point while the other boundary point moves. As a possible application we have in mind the optimal control of a mining elevator, where the length of the string changes during the transportation process. During the transportation process, oscillations of the elevator-cable can occur that can be damped in this way. We present an exact controllability result for Dirichlet boundary control at the fixed end of the string that states that there exist exact controls for which the oscillations vanish after finite time. For the result we assume that the movements are Lipschitz continuous with a Lipschitz constant, whose absolute value is smaller than the wave speed. In the result, we present the minimal time, for which exact controllability holds, this time depending on the movement of the boundary point. Our results are based upon travelling wave solutions. We present a representation of the set of successful controls that steer the system to rest after finite time as the solution set of two point-wise equalities. This allows for a transformation of the optimal control problem to a form where no partial differential equation appears. This representation enables interesting insights into the structure of the successful controls. For example, exact bang-bang controls can only exist if the initial state is a simple function and the initial velocity is zero.
Źródło:
Control and Cybernetics; 2019, 48, 1; 69-87
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies