Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "sodium silicate" wg kryterium: Temat


Wyświetlanie 1-6 z 6
Tytuł:
Impact of Density Degree and Grade of Inorganic Binder on Behavior of Molding Sand at High Temperature
Autorzy:
Stachowicz, M.
Paduchowicz, P.
Granat, K.
Powiązania:
https://bibliotekanauki.pl/articles/106947.pdf
Data publikacji:
2017
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
foundry
hydrated sodium silicate
hot-distortion
thermal deformation
molding sands
Opis:
This paper discusses the impact of high temperatures (up to 900°C) on molding and core sand with inorganic binders selected from among the group of unmodified grades of hydrated sodium silicate (water-glass). Molding sands with medium quartz sand were made under laboratory conditions and compacted at the different energy inputs necessary for obtaining various apparent densities (ϱ0). Due to the different composition and apparent density of molding mixtures hardened via microwaves at a frequency of 2.45 GHz, it was possible to assess their deformation (L) at a high temperature above the binder’s eutectic temperature. For this purpose, an apparatus for hot distortion tests was used whose construction and equipment allows us to measure the thermoplastic deformations in molding sand in many aspects; i.e., in its time of annealing. The article proposes new possibilities of interpreting the hot distortion phenomena in comparative studies of molding materials and mixtures. The application of this new measurement method revealed the differences between molding mixtures made with five inorganic binders with a molar module ranging from 2.0 to 3.4 and apparent density ranging from 1.34 to 1.57 g/cm3. It was established that distortions under the influence of high temperatures last the longest in molding sand with a binder with the highest molar module (3.4). Research also revealed that the density of molding sand is significant for increasing/decreasing the rate of thermoplastic deformations following the heating of samples only if the molding sand includes binders with a molar module of between 3.0 to 3.4. For molding sand with binders with molar modules from 2.0 to 2.5, it was established that this is excessively susceptible to thermoplastic deformation.
Źródło:
Journal of Casting & Materials Engineering; 2017, 1, 3; 64-69
2543-9901
Pojawia się w:
Journal of Casting & Materials Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Influence of sand base preparation on properties of chromite moulding sands with sodium silicate hardened with selected methods
Autorzy:
Stachowicz, M.
Granat, K.
Pałyga, Ł.
Powiązania:
https://bibliotekanauki.pl/articles/354867.pdf
Data publikacji:
2017
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
foundry engineering
chromite sand
hydrated sodium silicate
strength properties
microwave hardening
Opis:
The paper presents a research on the relation between thermal preparation of chromite sand base of moulding sands containing sodium silicate, hardened with selected physical and chemical methods, and structure of the created bonding bridges. Test specimens were prepared of chromite sand - fresh or baked at 950°C for 10 or 24 hours - mixed with 0.5 wt.% of the selected non-modified inorganic binder and, after forming, were hardened with CO2 or liquid esters, dried traditionally or heated with microwaves at 2.45 GHz. It was shown on the grounds of SEM observations that the time of baking the base sand and the hardening method significantly affect structure of the bonding bridges and are correlated with mechanical properties of the moulding sands. It was found that hardening chromite-based moulding mixtures with physical methods is much more favourable than hardening with chemical methods, guaranteeing also more than ten times higher mechanical properties.
Źródło:
Archives of Metallurgy and Materials; 2017, 62, 1; 379-383
1733-3490
Pojawia się w:
Archives of Metallurgy and Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Long-term Effects of Relative Humidity on Properties of Microwave Hardened Moulding Sand with Sodium Silicate
Autorzy:
Stachowicz, M.
Granat, K.
Powiązania:
https://bibliotekanauki.pl/articles/379875.pdf
Data publikacji:
2017
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
foundry
sodium silicate
humidity
microwaves
high-silica sand
odlewnia
krzemian sodu
wilgotność
mikrofale
piasek kwarcowy
Opis:
Moulding sands containing sodium silicate (water-glass) belong to the group of porous mixture with low resistance to increased humidity. Thanks to hydrophilic properties of hardened or even overheated binder, possible is application of effective methods of hydrous reclamation consisting in its secondary hydration. For the same reason (hydrophilia of the binder), moulds and foundry cores made of high-silica moulding sands with sodium silicate are susceptible to the action of components of atmospheric air, including the contained steam. This paper presents results of a research on the effect of (relative) humidity on mechanical and technological properties of microwave-hardened moulding mixtures. Specimens of the moulding sand containing 1.5 wt% of sodium water-glass with module 2.5 were subjected, in a laboratory climatic chamber, to long-term action of steam contained in the chamber atmosphere. Concentration of water in atmospheric air was stabilized for 28 days (672 h) according to the relative humidity parameter that was ca. 40%, 60% and 80% at constant temperature 20 °C. In three cycles of the examinations, the specimens were taken out from the chamber every 7 days (168 h) and their mechanical and technological parameters were determined. It was found on the grounds of laboratory measurements that moulds and cores hardened with microwaves are susceptible to action of atmospheric air and presence of water (as steam) intensifies action of the air components on glassy film of sodium silicate. Microwave-hardened moulding sands containing sodium silicate may be stored on a long-term basis in strictly determined atmospheric conditions only, at reduced humidity. In spite of a negative effect of steam contained in the air, the examined moulding mixtures maintain a part of their mechanical and technological properties, so the moulds and foundry cores stored in specified, controlled conditions could be still used in manufacture.
Źródło:
Archives of Foundry Engineering; 2017, 17, 3; 127-132
1897-3310
2299-2944
Pojawia się w:
Archives of Foundry Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Effect of Temperature on Chromite-Based Moulding Sands Bonded with Sodium Silicate
Autorzy:
Stachowicz, M.
Kamiński, M.
Granat, K.
Pałyga, Ł.
Powiązania:
https://bibliotekanauki.pl/articles/382605.pdf
Data publikacji:
2016
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
foundry engineering
chromite sand
moulding sand
baking temperature
sodium silicate
odlewnictwo
piasek formierski
masa formierska
temperatura zapiekania
krzemian sodu
Opis:
In the paper, a research on effects of baking temperature on chromite sand base of moulding sands bonded with sodium silicate is presented. Pure chromite sand and its chromite-based moulding sand prepared with use of sodium silicate were subjected to heating within 100 to 1200 °C. After cooling-down, changes of base grains under thermal action were determined. Chromite moulding sand was prepared with use of 0.5 wt% of domestic made, unmodified sodium silicate (water-glass) grade 145. After baking at elevated temperatures, creation of rough layer was observed on grain surfaces, of both pure chromite sand and that used as base of a moulding sand. Changes of sand grains were evaluated by scanning microscopy and EDS analyses. It was found that changes on grain surfaces are of laminar nature. The observed layer is composed of iron oxide (II) that is one of main structural components of chromite sand. In order to identify changes in internal structure of chromite sand grains, polished sections were prepared of moulding sand hardened with microwaves and baked at elevated temperatures. Microscopic observations revealed changes in grains structure in form of characteristically crystallised acicular particles with limited magnesium content, intersecting at various angles. EDS analysis showed that these particles are composed mostly of chromium oxide (III) and iron oxide (II). The temperature above that the a.m. changes are observed in both chromite-based moulding sand and in pure chromite sand. The observed phenomena were linked with hardness values and mass of this sand.
Źródło:
Archives of Foundry Engineering; 2016, 16, 4; 147-152
1897-3310
2299-2944
Pojawia się w:
Archives of Foundry Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Effect of Temperature on Chromite-Based Moulding Sands Bonded with Sodium Silicate
Autorzy:
Stachowicz, M.
Kamiński, M.
Granat, K.
Pałyga, Ł.
Powiązania:
https://bibliotekanauki.pl/articles/381070.pdf
Data publikacji:
2017
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
foundry engineering
chromite sand
moulding sand
baking temperature
sodium silicate
odlewnictwo
piasek formierski
masa formierska
temperatura zapiekania
krzemian sodu
Opis:
In the paper, a research on effects of baking temperature on chromite sand base of moulding sands bonded with sodium silicate is presented. Pure chromite sand and its chromite-based moulding sand prepared with use of sodium silicate were subjected to heating within 100 to 1200°C. After cooling-down, changes of base grains under thermal action were determined. Chromite moulding sand was prepared with use of 0.5 wt% of domestic made, unmodified sodium silicate (water-glass) grade 145. After baking at elevated temperatures, creation of rough layer was observed on grain surfaces, of both pure chromite sand and that used as base of a moulding sand. Changes of sand grains were evaluated by scanning microscopy and EDS analyses. It was found that changes on grain surfaces are of laminar nature. The observed layer is composed of iron oxide (II) that is one of main structural components of chromite sand. In order to identify changes in internal structure of chromite sand grains, polished sections were prepared of moulding sand hardened with microwaves and baked at elevated temperatures. Microscopic observations revealed changes in grains structure in form of characteristically crystallised acicular particles with limited magnesium content, intersecting at various angles. EDS analysis showed that these particles are composed mostly of chromium oxide (III) and iron oxide (II). The temperature above that the a.m. changes are observed in both chromite-based moulding sand and in pure chromite sand. The observed phenomena were linked with hardness values and mass of this sand.
Źródło:
Archives of Foundry Engineering; 2017, 17, 2; 95-100
1897-3310
2299-2944
Pojawia się w:
Archives of Foundry Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Evaluation of the Possibilities of Sodium Silicate Sands Application in Automated Hot-Box Process of Cores Shooting
Autorzy:
Stachowicz, M.
Granat, K.
Obuchowski, P.
Powiązania:
https://bibliotekanauki.pl/articles/382506.pdf
Data publikacji:
2017
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
foundry technology
sodium silicate
core box
core shooting
bending strength
technologia odlewnicza
krzemian sodu
rdzennica
rdzeń wstrzeliwany
wytrzymałość na zginanie
Opis:
The paper presents the results of preliminary research on the use of silica sands with hydrated sodium silicate 1.5% wt. of binder for the performance of eco-friendly casting cores in hot-box technology. To evaluate the feasibility of high quality casting cores performed by the use of this method, the tests were made with the use of a semiautomatic core shooter using the following operating parameters: initial shooting pressure of 6 bar, shot time 4 s and 2 s, core-box temperature 200, 250 and 300 °C and core heating time 30, 60, 90 and 150 s. Matrixes of the moulding sands were two types of high-silica sand: fine and medium. Moulding sand binder was a commercial, unmodified hydrated sodium silicate having a molar module SiO2/Na2O of 2.5. In one shot of a core-shooter were made three longitudinal samples (cores) with a total volume of about 2.8 dm3. The samples thus obtained were subjected to an assessment of the effect of shooting parameters, i.e. shooting time, temperature and heating time, using the criteria: core-box fill rate, bending strength (RgU), apparent density and surface quality after hardening. The results of the trials on the use of sodium silicate moluding sands made it possible to further refine the conditions of next research into the improvement of inorganic warm-box/hot-box technology aimed at: reduction of heating temperature and shot time. It was found that the performance of the cores depends on the efficiency of the venting system, shooting time, filling level of a shooting chamber and grains of the silica matrix used.
Źródło:
Archives of Foundry Engineering; 2017, 17, 4; 155-160
1897-3310
2299-2944
Pojawia się w:
Archives of Foundry Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-6 z 6

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies