Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "mass appraisal" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Spatial weight matrix impact on real estate hierarchical clustering in the process of mass valuation
Autorzy:
Gnat, Sebastian
Powiązania:
https://bibliotekanauki.pl/articles/19090897.pdf
Data publikacji:
2019
Wydawca:
Instytut Badań Gospodarczych
Tematy:
agglomerative clustering
entropy
property mass appraisal
market analysis
Opis:
Research background: The value of the property can be determined on an individual or mass basis. There are a number of situations in which uniform and relatively fast results obtained by means of mass valuation undoubtedly outweigh the advantages of the individual approach. In literature and practice there are a number of different types of models of mass valuation of real estate. For some of them it is postulated or required to group the valued properties into homogeneous subset due to various criteria. One such model is Szczecin Algorithm of Real Estate Mass Appraisal (SAREMA). When using this algorithm, the area to be valued should be divided into the so-called location attractiveness areas (LAZ). Such division can be made in many ways. Regardless of the method of clustering, its result should be assessed, depending on the degree of implementation of the adopted criterion of division quality. A better division of real estate will translate into more accurate valuation results. Purpose of the article: The aim of the article is to present an application of hierarchical clustering with a spatial constraints algorithm for the creation of LAZ. This method requires the specification of spatial weight matrix to carry out the clustering process. Due to the fact that such a matrix can be specified in a number of ways, the impact of the proposed types of matrices on the clustering process will be described. A modified measure of information entropy will be used to assess the clustering results. Methods: The article utilises the algorithm of agglomerative clustering, which takes into account spatial constraints, which is particularly important in the context of real estate valuation. Homogeneity of clusters will be determined with the means of information entropy. Findings & Value added: The main achievements of the study will be to assess whether the type of the distance matrix has a significant impact on the clustering of properties under valuation.
Źródło:
Oeconomia Copernicana; 2019, 10, 1; 131-151
2083-1277
Pojawia się w:
Oeconomia Copernicana
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Prediction of changes in the tax burden of land plots with the use of multivariate statistical analysis methods
Autorzy:
Dmytrów, Krzysztof
Gnat, Sebastian
Powiązania:
https://bibliotekanauki.pl/articles/424949.pdf
Data publikacji:
2019
Wydawca:
Wydawnictwo Uniwersytetu Ekonomicznego we Wrocławiu
Tematy:
logistic regression
classification
multivariate statistical analysis
real estate mass appraisal
Opis:
It is believed that the ad valorem tax will increase fiscal burdens. In order to verify this statement, with the use of the Szczecin Algorithm of Real Estates Mass Appraisal, the land plots were appraised and the ad valorem tax was calculated. Next, a training set was sampled, for which the composite variable was calculated by means of three approaches: the TOPSIS method, the Generalised Distance Measure as the composite measure of development (GDM2), and the quasi-TOPSIS. They were the explanatory variables in the logistic regression model. Next, for the test set, changes of tax burden were forecasted. The aim of the research was to check the effectiveness of the presented approach for the estimation of the consequences of introducing the ad valorem tax. The results showed that all three approaches yielded similar results, but GDM2 was the best one. The main finding is that these approaches can be used in the prediction of changes in the tax burden of land plots.
Źródło:
Econometrics. Ekonometria. Advances in Applied Data Analytics; 2019, 23, 2; 33-48
1507-3866
Pojawia się w:
Econometrics. Ekonometria. Advances in Applied Data Analytics
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies