- Tytuł:
- Discrete multivariate truncated distributions
- Autorzy:
- Gerstenkorn, T.
- Powiązania:
- https://bibliotekanauki.pl/articles/747571.pdf
- Data publikacji:
- 1978
- Wydawca:
- Polskie Towarzystwo Matematyczne
- Tematy:
- Exact distribution theory
- Opis:
-
Artykuł nie zawiera streszczenia
Let X(1),⋯,X(k),X(k+1) be random variables that take nonnegative integer values and let (∗) ∑(i,1,k+1)X(i)=n. The joint distribution of the first k variables is given by the probability function p(x(1),⋯,x(k))=P(X(1)=x(1),⋯,X(k)=x(k)). A truncation of the component X(i) of the vector X=(X(1),⋯,X(k)) is defined by the constraint b(i)≤X(i)≤n, where b(i) is a positive integer. The author obtains an expression for the probability function p∗(x(1),⋯,x(t),x(t+1),⋯,x(k)) of the vector X∗, which is obtained by truncating the first t components of the vector X (in view of (∗), the set of possible values of the remaining components also narrows). As an application he considers an urn scheme that reduces to a multivariate (in particular, truncated) Pólya distribution. This work supplements the author's previous paper - Źródło:
-
Mathematica Applicanda; 1978, 6, 12
1730-2668
2299-4009 - Pojawia się w:
- Mathematica Applicanda
- Dostawca treści:
- Biblioteka Nauki