Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "weak continuity" wg kryterium: Temat


Wyświetlanie 1-1 z 1
Tytuł:
Banach spaces in which all multilinear forms are weakly sequentially continuous
Autorzy:
Castillo, Jesús M.F.
García, Ricardo
Gonzalo, Raquel
Powiązania:
https://bibliotekanauki.pl/articles/1216281.pdf
Data publikacji:
1999
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
multilinear forms
polynomials
weak continuity
Opis:
We solve several problems in the theory of polynomials in Banach spaces. (i) There exist Banach spaces without the Dunford-Pettis property and without upper p-estimates in which all multilinear forms are weakly sequentially continuous: some Lorentz sequence spaces, their natural preduals and, most notably, the dual of Schreier's space. (ii) There exist Banach spaces X without the Dunford-Pettis property such that all multilinear forms on X and X* are weakly sequentially continuous; this gives an answer to a question of Dimant and Zalduendo [20]. (iii) The sum of two polynomially null sequences need not be polynomially null; this answers a question of Biström, Jaramillo and Lindström [8] and also of González and Gutiérrez [23]. (iv), (v) The absolutely convex closed hull of a pw-compact set need not be pw-compact; the projective tensor product of two polynomially null sequences need not be a polynomially null sequence. This answers two questions of González and Gutiérrez [23]. (vi) There exists a Banach space without property (P); this answers a question of Aron, Choi and Llavona [5].
Źródło:
Studia Mathematica; 1999, 136, 2; 121-145
0039-3223
Pojawia się w:
Studia Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies