- Tytuł:
- A conjecture on cycle-pancyclism in tournaments
- Autorzy:
-
Galeana-Sánchez, Hortensia
Rajsbaum, Sergio - Powiązania:
- https://bibliotekanauki.pl/articles/744233.pdf
- Data publikacji:
- 1998
- Wydawca:
- Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
- Tematy:
-
Tournaments
pancyclism
cycle-pancyclism - Opis:
-
Let T be a hamiltonian tournament with n vertices and γ a hamiltonian cycle of T. In previous works we introduced and studied the concept of cycle-pancyclism to capture the following question: What is the maximum intersection with γ of a cycle of length k? More precisely, for a cycle Cₖ of length k in T we denote $I_γ (Cₖ) = |A(γ)∩A(Cₖ)|$, the number of arcs that γ and Cₖ have in common. Let $f(k,T,γ) = max{I_γ(Cₖ)|Cₖ ⊂ T}$ and f(n,k) = min{f(k,T,γ)|T is a hamiltonian tournament with n vertices, and γ a hamiltonian cycle of T}. In previous papers we gave a characterization of f(n,k). In particular, the characterization implies that f(n,k) ≥ k-4.
The purpose of this paper is to give some support to the following original conjecture: for any vertex v there exists a cycle of length k containing v with f(n,k) arcs in common with γ. - Źródło:
-
Discussiones Mathematicae Graph Theory; 1998, 18, 2; 243-251
2083-5892 - Pojawia się w:
- Discussiones Mathematicae Graph Theory
- Dostawca treści:
- Biblioteka Nauki