Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "zbiór uczący" wg kryterium: Temat


Wyświetlanie 1-1 z 1
Tytuł:
Employing linear artificial neural networks in property appraisal and valuation – possible applications
Zastosowanie liniowych sieci neuronowych w wycenie nieruchomości – możliwości aplikacyjne
Autorzy:
Górak, M.
Powiązania:
https://bibliotekanauki.pl/articles/100240.pdf
Data publikacji:
2017
Wydawca:
Uniwersytet Rolniczy im. Hugona Kołłątaja w Krakowie
Tematy:
neural network
artificial neuron
training set
property valuation
database
sieć neuronowa
sztuczny neuron
zbiór uczący
wycena nieruchomości
baza danych
Opis:
Transactional price is the result of some kind of free market game, and of independent decisions taken by the parties to the transaction. Prices depend on a number of factors, specific to the local real estate market. The impact of some factors is fixed, while others are dependent on the location of the property. Therefore, research into the determination of rules that would describe the relationship between the market price of the real estate, and its market characteristics, remain valid. The article presents the possibilities of applying linear artificial neural networks to real estate valuation. Using a database, the artificial linear neural network is developing a regression model, which produces the results that oscillate close to the market value of the property. The necessary condition is the creation of a database that is representative of the given real estate market.
Cena transakcyjna to wynik pewnego rodzaju gry rynkowej oraz suwerennych decyzji podejmowanych przez strony transakcji. Ceny uzależnione są od szeregu czynników charakterystycznych dla danego lokalnego rynku nieruchomości. Wpływ pewnych czynników jest niezmienny, inne zaś zależne są od lokalizacji nieruchomości. Dlatego badania nad określeniem reguł opisujących zależność pomiędzy ceną rynkową nieruchomości a jej cechami rynkowymi są wciąż aktualne. Artykuł przedstawia możliwości aplikacyjne sztucznych liniowych sieci neuronowych w wycenie nieruchomości. Sztuczna liniowa sieć neuronowa na podstawie bazy danych, opracowuje model regresyjny uzyskujący wyniki oscylujące w pobliżu rynkowej wartości nieruchomości. Warunkiem koniecznym jest utworzenie bazy danych, reprezentatywnej dla danego rynku nieruchomości.
Źródło:
Geomatics, Landmanagement and Landscape; 2017, 1; 17-24
2300-1496
Pojawia się w:
Geomatics, Landmanagement and Landscape
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies