Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "modernity," wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Metoda oceny nowoczesności techniczno-konstrukcyjnej ciągników rolniczych wykorzystująca sztuczne sieci neuronowe. Cz. I: Założenia metody
An artificial neural networks-based method for assessing technical and constructional modernity of farm tractors. Part I: Method guidelines
Autorzy:
Francik, S.
Powiązania:
https://bibliotekanauki.pl/articles/287916.pdf
Data publikacji:
2009
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
nowoczesność
ciągnik rolniczy
sztuczna sieć neuronowa
modernity
farm tractor
artificial neural network
Opis:
Celem pracy było opracowanie koncepcji autorskiej metody oceny nowoczesności techniczno-konstrukcyjnej ciągników rolniczych. Przedstawiono założenia przyjęte do sformułowania modelu oceny nowoczesności. Zgodnie z założeniami metoda będzie wykorzystywała do oceny sztuczne sieci neuronowe, oraz będzie uwzględniała zmienność w czasie wzorca nowoczesnego ciągnika.
The purpose of the work was to develop an author's method for assessing technical and constructional modernity of farm tractors. The paper presents theoretical model used to assess modernity. According to the guidelines, the method uses in the assessment artificial neural networks, and takes into account variability in time for a modern tractor model.
Źródło:
Inżynieria Rolnicza; 2009, R. 13, nr 9, 9; 41-47
1429-7264
Pojawia się w:
Inżynieria Rolnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Metoda oceny nowoczesności techniczno-konstrukcyjnej ciągników rolniczych wykorzystująca Sztuczne Sieci Neuronowe. Cz. II: Modele neuronowe do oceny nowoczesności ciągników rolniczych
Method allowing to assess technical and constructional modernity of farm tractors with the use of Artificial Neural Networks. Part II: Neural models for farm tractor modernity assessment
Autorzy:
Francik, S.
Powiązania:
https://bibliotekanauki.pl/articles/288947.pdf
Data publikacji:
2010
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
ciągnik rolniczy
sztuczna sieć neuronowa
nowoczesność
farm tractor
artificial neural network
modernity
Opis:
Celem pracy było zbudowanie sztucznych sieci neuronowych przeznaczonych do oceny nowoczesności techniczno-konstrukcyjnej różnych modeli ciągników rolniczych. Te modele neuronowe (wielowarstwowe Perceptrony) pozwalają na ocenę grup cech charakteryzujących: silnik, WOM, uciąg, napęd, wielkość ciągnika, trójpunktowy układ zawieszenia, inne cechy, a następnie ocenę całego ciągnika. Sieci te wykazują małe wartości błędów średniokwadratowych (od 1,05 do 2,50 roku dla oceny grup cech, oraz 0,38 i 0,96 roku dla oceny całego ciągnika).
The purpose of the work was to build artificial neural networks designed to assess technical and constructional modernity of various farm tractor models. These neural models (multiplayer Perceptrons) allow to evaluate groups of properties that characterise: a motor, power take-off shaft, draw-bar pull, drive, tractor size, three-point suspension system, other properties, and finally - the whole tractor. These networks show low mean square error values (from 1.05 to 2.50 years when assessing groups of properties, and 0.38 and 0.96 years in case of the whole tractor).
Źródło:
Inżynieria Rolnicza; 2010, R. 14, nr 3, 3; 29-36
1429-7264
Pojawia się w:
Inżynieria Rolnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie autorskiej metody wyznaczania wartości parametrów nowoczesnych systemów technicznych do pługów i opryskiwaczy polowych
Employing an authors method for determining values of parameters for modern technical systems in ploughs and field spraying machines
Autorzy:
Francik, S.
Powiązania:
https://bibliotekanauki.pl/articles/287923.pdf
Data publikacji:
2009
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
nowoczesność
prognozowanie
maszyna rolnicza
sztuczna sieć neuronowa
modernity
predicting
farm machine
artificial neural network
Opis:
Celem pracy było zastosowanie autorskiej metody, wykorzystującej sztuczne sieci neuronowe, do prognozowania wartości parametrów technicznych nowoczesnych maszyn rolniczych do pługów zawieszanych i opryskiwaczy polowych. Opracowano schematy kolejności wyznaczania poszczególnych parametrów charakteryzujących nowoczesne maszyny objęte badaniami. Jako początkowe zmienne wejściowe przyjęto rok wprowadzenia modelu maszyny rolniczej na rynek oraz jej zapotrzebowanie na moc. Następnie opracowano 10 modeli neuronowych - po 5 dla każdego typu maszyny. Modelami tymi były wielowarstwowe perceptrony oraz sieci o radialnych funkcjach bazowych.
The purpose of the work was to employ an author's method using artificial neural networks to predict values of technical parameters for modern farm machines used in suspended ploughs and field spraying machines. The researchers developed sequence schemes for determining individual parameters characterising modern machines subject to tests. Year of launching a farm machine model into the market and its power demand were taken as initial input variables. Then, 10 neural models were developed - 5 for each machine type. The models were multi-layer perceptrons and networks with radial basic functions.
Źródło:
Inżynieria Rolnicza; 2009, R. 13, nr 9, 9; 49-55
1429-7264
Pojawia się w:
Inżynieria Rolnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies