- Tytuł:
- Adaptive partition-based logic simulation using GPGPU
- Autorzy:
-
Zhang, M.
Zhang, Y
Yang, W.
Kai, Y.
Wei, T.
Fan, X. - Powiązania:
- https://bibliotekanauki.pl/articles/398148.pdf
- Data publikacji:
- 2011
- Wydawca:
- Politechnika Łódzka. Wydział Mikroelektroniki i Informatyki
- Tematy:
-
symulacja logiczna
obliczenia strumieniowe
GPGPU
obliczenia ogólnego przeznaczenia na układach GPU
CUDA
EDA
Automatyzacja procesu projektowania systemów elektronicznych
logic simulation
stream computing - Opis:
- With the improvement of the gate complexity, the verification overhead becomes more decisive for VLSI design cost In order to reduce the simulation time, a adaptive partition based parallel method of VLSI logic simulation with GPGPU is addressed in this paper. The numerous arithmetic blocks of GPGPU is utilized simultaneously for disparate circuit macros. The partition strategy we proposed shows a sufficient flexibility to balance the different work load in parallel threads and fit the feature of GPU architecture. To explore the parallelism and locality of logic simulation further, the circuit macro is organized as stream data. The data dependency between the input and output nets in one individual logical path is handled with the shared memory of GPGPU. As for different logical paths, the dependency is processed by threads synchronization. To illustrate the performance, a serial experiments is implemented in Intel CoreDuo workstation with Nvidia GTX465 GPU board. Four typical digital circuits (LDPC, DES3, OpenRISC 1200 and OpenSPARCPARC T1) are considered as the benchmark. The result of experiments demonstrate a significant speed-up is achieved by using GPGPU parallel method, comparing with the CPU serial logic simulation. In maximal case (OpenS T1), the GPGPU parallel acceleration computes 21 times faster than serial program.
- Źródło:
-
International Journal of Microelectronics and Computer Science; 2011, 2, 4; 121-128
2080-8755
2353-9607 - Pojawia się w:
- International Journal of Microelectronics and Computer Science
- Dostawca treści:
- Biblioteka Nauki