Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Lewiński, T." wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
Layout optimization of two isotropic materials in elastic shells
Optymalizacja rozmieszczenia dwu materiałów w powłokach sprężystych
Autorzy:
Dzierżanowski, G.
Lewiński, T
Powiązania:
https://bibliotekanauki.pl/articles/279832.pdf
Data publikacji:
2003
Wydawca:
Polskie Towarzystwo Mechaniki Teoretycznej i Stosowanej
Tematy:
homogenization
minimum compliance problem
relaxation by homogenization
Opis:
The two-phase layout problem within the plate theory was solved by Gibiansky and Cherkaev in 1984. The same problem in the plane stress formulation was solved by the same authors in eventually cleared up by Allaire and Kohn in 1993. In the thin shell theory both these formulations are coupled, which is clearly seen in the homogenization formulae found by Lewiński and Telega in 1988, Telega and Lewiński in 1998, and a general setting of the layout problem presented in the book by the same authors. The aim of the present paper is to set this problem within the Mushtari-Donnell-Vlasov approximation. The main result of the present examination is the lower bound of the complementary energy found by using the translation method. The translation matrix involves off-diagonal components, which leads to the effective complementary potential of a specific coupled form, expressible in terms of invariants of the stress and couple results.
Zagadnienie optymalnego rozkładu dwóch materiałów izotropowych w sprężystych plytach cienkich rozwiązali Gibianskij i Czerkajew w roku 1984. Minimalizacji podlegała podatność płyty. Analogiczne zadanie dotyczące teorii tarcz rozwiązali ci sami autorzy w 1987r. Sformułowanie to uzupełnili i uściślili Allaire i Kohn w roku 1993. W zadaniu dotyczącym powłok cienkich oba te sformułowania są ze sobą sprzężone, co jasno jest widoczne w formułach homogenizacji znalezionych w pracach Lewińskiego i Telegi z roku 1988 oraz pracach Telegi i Lewińskiego z roku 1998; ogólne, niejawne sformułowanie tego zadania optymalizacji omówiono w książce tych samych autorów. Celem niniejszej pracy jest sformułowanie tego zadania w sposób jawny w zakresie technicznej teorii powłok Musztariego-Donnella-Własowa. W pracy wyprowadzamy w sposób jawny dolne oszacowanie energii komplementarnej z wykorzystaniem metody translacji. Macierz traslacji zawiera tutaj składniki pozadiagonalne. Ta postać macierzy translacji prowadzi do zastępczego potencjału o specyficznej postaci sprzężonej, wyrażalnej za pomocą niezmienników sił wewnętrznych w powłoce.
Źródło:
Journal of Theoretical and Applied Mechanics; 2003, 41, 3; 459-472
1429-2955
Pojawia się w:
Journal of Theoretical and Applied Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Topology optimization in structural mechanics
Autorzy:
Lewiński, T.
Czarnecki, S.
Dzierżanowski, G.
Sokół, T.
Powiązania:
https://bibliotekanauki.pl/articles/202001.pdf
Data publikacji:
2013
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
structural optimization
topology optimization
free material design
anisotropic elasticity
compliance minimization
minimum weight design
funicular structures
optimal design of frames
Opis:
Optimization of structural topology, called briefly: topology optimization, is a relatively new branch of structural optimization. Its aim is to create optimal structures, instead of correcting the dimensions or changing the shapes of initial designs. For being able to create the structure, one should have a possibility to handle the members of zero stiffness or admit the material of singular constitutive properties, i.e. void. In the present paper, four fundamental problems of topology optimization are discussed: Michell’s structures, two-material layout problem in light of the relaxation by homogenization theory, optimal shape design and the free material design. Their features are disclosed by presenting results for selected problems concerning the same feasible domain, boundary conditions and applied loading. This discussion provides a short introduction into current topics of topology optimization.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2013, 61, 1; 23-37
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies