Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Czajkowski, J." wg kryterium: Autor


Wyświetlanie 1-3 z 3
Tytuł:
Analytical and numerical solving of linear non-homogeneous differential Equations of the first-order with constant coefficients by using constant variation method and application of Mathematica program
Rozwiązywanie analityczno-numeryczne liniowych niejednorodnych równań różniczkowych pierwszego rzędu o stałych współczynnikach przy użyciu metody wariacji stałej i zastosowaniem programu Mathematica
Autorzy:
Czajkowski, A. A.
Oleszak, W. K.
Dyrdał, J.
Powiązania:
https://bibliotekanauki.pl/articles/135890.pdf
Data publikacji:
2017
Wydawca:
Wyższa Szkoła Techniczno-Ekonomiczna w Szczecinie
Tematy:
ordinary differential equations
linear non-homogeneous equations of the first order
constant coefficients
variation constant method
solutions analytical
solutions numerical
Mathematica
równania różniczkowe zwyczajne
równania różniczkowe liniowe niejednorodne pierwszego rzędu
stałe współczynniki
metoda wariacji stałej
rozwiązania analityczne
rozwiązania numeryczne
Opis:
Introduction and aim: The paper presents the analytical and numerical algorithm of solving linear nonhomogeneous equations of the first order with constant coefficients. The aim of the work is to show the algorithms for solving equations both analytically and numerically. The additional aim is to show numerical algorithms and graphical interpretation of solutions. Material and methods: For selected equations, from the subject literature, constant variation method has been presented. Results: The paper presents the selected linear non-homogeneous equations of the first order with constant coefficients containing exponential, polynomial and trigonometric functions. Conclusion: Taking into account the constant variation method it is possible to solve the first order linear non-homogeneous differential equations. However, using the Mathematica program for numerical solution, you can quickly get a solution and create a graphical interpretation of solutions.
Wstęp i cel: W pracy pokazano algorytmy analityczny i numeryczny rozwiązywania równań różniczkowych liniowych niejednorodnych pierwszego rzędu o stałych współczynnikach. Celem pracy jest pokazanie algorytmu rozwiązywania równań zarówno sposobem analitycznym jak i numerycznych. Ponadto również dodatkowym celem jest pokazanie algorytmów numerycznych oraz interpretacji graficznej rozwiązań. Materiał i metody: Dla wybranych równań, z literatury przedmiotu, zastosowano metodę wariacji stałej. Wyniki: W pracy opracowano wybrane równania różniczkowe liniowe niejednorodne pierwszego rzędu o stałych współczynnikach zawierających funkcje wykładnicze, wielomianowe i trygonometryczne. Wniosek: Stosując metodę uzmienniania stałej jest możliwe rozwiązywanie równań różniczkowych liniowych niejednorodnych pierwszego rzędu o stałych współczynnikach. Natomiast wykorzystując do numerycznego rozwiązywania program Mathematica można szybko uzyskać rozwiązanie oraz sporządzić interpretację graficzną rozwiązań.
Źródło:
Problemy Nauk Stosowanych; 2017, 7; 5-18
2300-6110
Pojawia się w:
Problemy Nauk Stosowanych
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analytical and numerical solving of linear non-homogeneous differential equations of the first-order with changeable coefficients by using constant variation method and application of Mathematica program
Rozwiązywanie analityczno-numeryczne liniowych niejednorodnych równań różniczkowych pierwszego rzędu o zmiennych współczynnikach przy użyciu metody wariacji stałej i zastosowaniu programu Mathematica
Autorzy:
Czajkowski, A. A.
Oleszak, W. K.
Dyrdał, J.
Powiązania:
https://bibliotekanauki.pl/articles/135982.pdf
Data publikacji:
2018
Wydawca:
Wyższa Szkoła Techniczno-Ekonomiczna w Szczecinie
Tematy:
ordinary differential equations
linear equations
homogeneous equations
equations of the first order
changeable coefficients
variation constant method
analytical solution
numerical solution
Mathematica
równania różniczkowe zwyczajne
równania liniowe
równania niejednorodne
równania pierwszego rzędu
zmienne współczynniki
metoda wariacji stałej
rozwiązanie analityczne
rozwiązanie numeryczne
Opis:
Introduction and aim: The paper presents the analytical and numerical algorithm of solving linear nonhomogeneous equations of the first order with changeable coefficients. The aim of the work is to show the algorithms for solving equations both analytically and numerically. The additional aim is to show numerical algorithms and graphical interpretation of solutions. Material and methods: Some selected equations have been chosen from the subject literature. In the solutions the constant variation method has been presented. Results: The paper presents the selected linear non-homogeneous equations of the first order with changeable coefficients containing exponential, logarithmic, trigonometric and cyclometric functions. Conclusion: Taking into account the constant variation method it is possible to solve the first order linear nonhomogeneous differential equations with changeable coefficients. Using the Mathematica program it is possible quickly get a solution and create its graphical interpretation.
Wstęp i cel: W pracy pokazano algorytmy analityczny i numeryczny rozwiązywania równań różniczkowych liniowych niejednorodnych pierwszego rzędu o zmiennych współczynnikach. Celem pracy jest pokazanie algorytmu rozwiązywania równań zarówno sposobem analitycznym jak i numerycznym. Ponadto również dodatkowym celem jest pokazanie algorytmów numerycznych oraz interpretacji graficznej rozwiązań. Materiał i metody: Wybrane równania zaczerpnięto z literatury przedmiotu. W rozwiązaniach równań zastosowano metodę wariacji stałej. Wyniki: W pracy opracowano wybrane równania różniczkowe liniowe niejednorodne pierwszego rzędu o zmiennych współczynnikach zawierających funkcje wykładnicze, logarytmiczne, trygonometryczne i arcus. Wniosek: Stosując metodę uzmienniania stałej jest możliwe rozwiązywanie równań różniczkowych liniowych niejednorodnych pierwszego rzędu o zmiennych współczynnikach. Wykorzystując program Mathematica można szybko uzyskać rozwiązanie oraz sporządzić jego interpretację graficzną.
Źródło:
Problemy Nauk Stosowanych; 2018, 8; 5-20
2300-6110
Pojawia się w:
Problemy Nauk Stosowanych
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Symulacja analityczno-numeryczna przesączania wody gruntowej przez fundament budynku w aspekcie teorii perkolacji
Analytical and numerical simulation of groundwater filtration through building foundation in the aspect of percolation theory
Autorzy:
Czajkowski, A. A.
Frączak, P. S.
Dyrdał, J.
Czajkowska, M. A.
Powiązania:
https://bibliotekanauki.pl/articles/135798.pdf
Data publikacji:
2017
Wydawca:
Wyższa Szkoła Techniczno-Ekonomiczna w Szczecinie
Tematy:
budynki
fundamenty
woda gruntowa
przesączanie
teoria perkolacji
symulacja numeryczna
MathCAD
buildings
foundations
groundwater
filtration
percolation theory
numerical simulation
Opis:
Wstęp i cele: W pracy opisano możliwość zastosowania elementów teorii perkolacji w hydrogeologii do modelowania przesączania wody gruntowej przez fundamenty budynków. Celem pracy jest stworzenie analityczno-numerycznego modelu przesączania wody przez fundamenty budynków w aspekcie teorii perkolacji. Materiał i metody: Materiał opracowano na podstawie literatury przedmiotu. Zastosowano metodę analityczną i numeryczną z zastosowaniem programu MathCAD. Wyniki: W pracy przedstawiono model analityczny, w ujęciu macierzowym, natężenia przesączania wody gruntowej przez materiał fundamentu budynku. Opracowano symulację graficzną w aspekcie teorii perkolacji z użyciem algorytmu numerycznego w programie MathCAD. Wniosek: Znajomość wyników symulacyjnych w programie numerycznym z równoczesną analizą badań specjalistycznych geologicznych pozwoli przewidzieć dopuszczalny krytyczny stan nasycenia wodą gruntową fundamentu budynku.
Introduction and aim: The paper presents the possibility of applying the elements of percolation theory in hydrogeology to the modeling of groundwater filtration through the foundations of buildings. The aim of this work is to create an analytical and numerical model of groundwater filtration through foundations of buildings in the aspect of percolation theory. Material and methods: The material is based on the literature of the subject. An analytical and numerical method using MathCAD has been used in the paper. Results: The paper presents an analytical model, in terms of matrix, of groundwater filtration through the building foundation material. A graphical simulation of the percolation theory using numerical algorithms in MathCAD has been developed in the considerations. Conclusion: Knowledge of simulation results in a numerical program with simultaneous analysis of geological research will allow predictable critical groundwater saturation of the building foundation.
Źródło:
Problemy Nauk Stosowanych; 2017, 6; 77-82
2300-6110
Pojawia się w:
Problemy Nauk Stosowanych
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies