Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Footing" wg kryterium: Temat


Wyświetlanie 1-6 z 6
Tytuł:
Numerical study of ultimate bearing capacity of rectangular footing on layered sand
Autorzy:
Panwar, V.
Dutta, R. K.
Powiązania:
https://bibliotekanauki.pl/articles/952456.pdf
Data publikacji:
2020
Wydawca:
Stowarzyszenie Komputerowej Nauki o Materiałach i Inżynierii Powierzchni w Gliwicach
Tematy:
rectangular footing
finite element analysis
bearing capacity
layered sandstone
analiza elementów skończonych
nośność podłoża
Opis:
Purpose: The purpose of this study is to investigate the ultimate bearing capacity of the rectangular footing resting over layered sand using finite element method. Design/methodology/approach: Finite element analysis was used to investigate the dimensionless ultimate bearing capacity of the rectangular footing resting on a limited thickness of upper dense sand layer overlying limitless thickness of lower loose sand layer. The friction angle of the upper dense sand layer was varied from 41° to 46° whereas for the lower loose sand layer it was varied from 31° to 36°. Findings: The results reveal that the dimensionless ultimate bearing capacity was found to increase up to an H/W ratio of about 1.75 beyond which the increase was marginal. The results further reveal that the dimensionless ultimate bearing capacity was the maximum for the upper dense and lower loose sand friction angles of 46° and 36°, while it was the lowest for the upper dense and lower loose sands corresponding to the friction angle of 41° and 31°. For H/W = 0.5 and 2, the dimensionless bearing capacity decreases with the increase in the L/W ratio from 0.5 to 6 beyond which the dimensionless ultimate bearing capacity remains constant for all combinations of parameters. The results were presented in nondimensional manner and compared with the previous studies available in literature. Research limitations/implications: The analysis is performed using a ABAQUS 2017 software. The limitation of this study is that only finite element analysis is performed without conducting any experiments in the laboratory. Further the study is conducted only for the vertical loading. Practical implications: This proposed numerical study can be used to predict the ultimate bearing capacity of the rectangular footing resting on layered sand. Originality/value: The present study gives idea about the ultimate bearing capacity of rectangular footing when placed on layered sand (dense sand over loose sand) as well as the effect of thickness of top dense sand layer on the ultimate bearing capacity. The findings could be used to calculate the ultimate bearing capacity of the rectangular footing on layered sand.
Źródło:
Journal of Achievements in Materials and Manufacturing Engineering; 2020, 101, 1; 15-26
1734-8412
Pojawia się w:
Journal of Achievements in Materials and Manufacturing Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Influence of positions of the geotextile on the load-settlement behaviour of circular footing resting on single stone column by 2D Plaxis software
Autorzy:
Yadav, J. S.
Kumar, K.
Dutta, R. K.
Garg, A.
Powiązania:
https://bibliotekanauki.pl/articles/2055761.pdf
Data publikacji:
2021
Wydawca:
Stowarzyszenie Komputerowej Nauki o Materiałach i Inżynierii Powierzchni w Gliwicach
Tematy:
clay bed
circular footing
stone column
geotextile
numerical analysis
kolumny kamienne
geotkanina
analiza numeryczna
Opis:
Purpose: This study aims to study the load – settlement behaviour of circular footing rested on encased single stone column. Design/methodology/approach: The effect of vertical, horizontal and combined verticalhorizontal encasement of stone column on the load carrying capacity were examined numerically. The effect of stone column dimension (80 mm and 100 mm), length (400 mm and 500 mm), and spacing of reinforcement on the load carrying capacity and reinforcement ratio were assessed. Findings: The obtained results revealed that the load carrying capacity of geotextile encased stone columns are more than ordinary stone columns. For vertically encased stone columns as the diameter increases, the advantage of encasement decreases. Whereas, for horizontally encased stone column and combined vertical- horizontal encased stone column, the performance of encasement intensifies as the diameter of stone column increases. The improvement in the load carrying capacity of clay bed reinforced with combined verticalhorizontal encased stone columns are higher than vertical encased stone columns or horizontal encased stone column. The maximum performance of encasement was observed for VHESC1 of D = 80 mm. Research limitations/implications: For this study, the diameter of footing and stone column was kept same. The interface strength factor between stone column and clay bed was not considered. Practical implications: The encased stone column could be use improve the laod bearing capacity of weak soils. Originality/value: Many studies are available in literature regarding use of geosynthetic as vertical encasement and horizontal encasement of stone column. The study on combined effect of vertical and horizontal encasement of stone column on load carrying capacity of weak soil is very minimal. Keeping this in view, the present work was carried out.
Źródło:
Journal of Achievements in Materials and Manufacturing Engineering; 2021, 107, 2; 75--85
1734-8412
Pojawia się w:
Journal of Achievements in Materials and Manufacturing Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Bearing capacity of E-shaped footing on layered sand
Autorzy:
Nazeer, S.
Dutta, R. K.
Powiązania:
https://bibliotekanauki.pl/articles/1818792.pdf
Data publikacji:
2021
Wydawca:
Stowarzyszenie Komputerowej Nauki o Materiałach i Inżynierii Powierzchni w Gliwicach
Tematy:
square footing
E-shaped footing
finite element analysis
bearing capacity
layered sandstone
thickness of upper layer
friction angle
stopa fundamentowa
analiza elementów skończonych
nośność podłoża
piaskowiec warstwowy
grubość warstwy wierzchniej
kąt tarcia
Opis:
Purpose: The purpose of this study is to estimate the ultimate bearing capacity of the E-shaped footing resting on two layered sand using finite element method. The solution was implemented using ABACUS software. Design/methodology/approach: The numerical study of the ultimate bearing capacity of the E-shaped footing resting on layered sand and subjected to vertical load was carried out using finite element analysis. The layered sand was having an upper layer of loose sand of thickness H and lower layer was considered as dense sand of infinite depth. The various parameters varied were the friction angle of the upper (30° to 34°) and lower (42° to 46°) layer of sand as well as the thickness (0.5B, 2B and 4B) of the upper sand layer. Findings: The results reveal that the dimensionless ultimate bearing capacity was found to decrease with the increased in the H/B ratio for all combinations of parameters. The dimensionless ultimate bearing capacity was maximum for the upper loose sand friction angle of 34° and lower dense sand friction angle of 46°. The results further reveal that the dimensionless bearing capacity of the E-shaped footing was higher in comparison to the dimensionless bearing capacity of the square footing on layered sand (loose over dense). The improvement in the ultimate bearing capacity for the E-shaped footing was observed in the range of 109.35% to 152.24%, 0.44% to 7.63% and 0.63% to 18.97% corresponding to H/B ratio of 0.5, 2 and 4 respectively. The lowest percentage improvement in the dimensionless bearing capacity for the E-shaped footing on layered sand was 0.44 % at a H/B = 2 whereas the highest improvement was 152.24 % at a H/B = 0.5. Change of footing shape from square to E-shaped, the failure mechanism changes from general shear to local shear failure. Research limitations/implications: The results presented in this paper were based on the numerical study conducted on E-shaped footing made out of a square footing of size 1.5 m x 1.5 m. However, further validation of the results presented in this paper, is recommended using experimental study conducted on similar size E-shaped footing. Practical implications: The proposed numerical study can be useful for the architects designing similar types of super structures requiring similar shaped footings. Originality/value: No numerical study on E-shaped footing resting on layered sand (loose over dense) were conducted so far. Hence, an attempt was made in this article to estimate the bearing capacity of these footings.
Źródło:
Journal of Achievements in Materials and Manufacturing Engineering; 2021, 105, 2; 49--60
1734-8412
Pojawia się w:
Journal of Achievements in Materials and Manufacturing Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Study of bearing capacity of skirted irregular pentagonal footings on different sands
Autorzy:
Thakur, A
Dutta, R. K.
Powiązania:
https://bibliotekanauki.pl/articles/1818797.pdf
Data publikacji:
2021
Wydawca:
Stowarzyszenie Komputerowej Nauki o Materiałach i Inżynierii Powierzchni w Gliwicach
Tematy:
bearing capacity
sands
friction angle
pentagonal footing
singly skirted
doubly skirted
nośność
piaski
kąt tarcia
Opis:
Purpose: The paper presents an experimental and numerical study to evaluate the bearing capacity of unskirted, singly and doubly skirted irregular pentagonal footings on different sands (S1, S2, S3) at a relative density of 30 %. The skirt depth of the footing was varied from 0.0B to 1.5B (B is the width of the square footing). Design/methodology/approach: The experimental and numerical study of the singly and doubly skirted irregular pentagonal footing resting on sands was modelled in a test tank and Plaxis 3D software respectively. Findings: The results of this study reveal that the bearing capacity was higher for the skirted irregular pentagonal footings on sand S3 followed by sand S2 and S1. The lowest percentage improvement for the singly skirted footing on sand S3 was 18.51% at a Ds/B = 0.25 whereas the highest improvement was 90.81% at a Ds/B = 1.50 for the singly skirted footing on sand S2. The highest percentage improvement for the doubly skirted footing on sand S2 was 95.13% at a Ds/B = 1.5 whereas the lowest improvement was 23.70% at a Ds/B = 0.25 the doubly skirted footing on sand S3. The results further revealed that the numerically obtained bearing capacity was marginally higher in comparison to the one obtained experimentally for the footings on all sands. Further, the experimental results validated the results obtained numerically with an average deviation of 8%. The percentage improvement in the bearing capacity was higher for the irregular pentagonal footing resting on sand S2 in comparison to sand S3 and S1. The settlement response of the irregular pentagonal footings is unchanged by increasing the number of elements beyond 7700. Both the experimental and numerical studies revealed a linear elastic behaviour at Ds = 0.5B, while the experimentally obtained pressure-settlement ratio plot shows a clear failure at Ds= 1B and 1.5B. Research limitations/implications: The results presented in this paper were based on the experimental and numerical study conducted on small scale model footings. However, for the actual footings, further study is recommended using full-scale field size footings to generalize the results. Originality/value: No experimental and numerical studies on singly and doubly skirted irregular pentagonal footings were conducted so far. Hence, an attempt was made in this article to predict the bearing capacity of these footings experimentally and using Plaxis 3D respectively.
Źródło:
Journal of Achievements in Materials and Manufacturing Engineering; 2021, 105, 1; 5--17
1734-8412
Pojawia się w:
Journal of Achievements in Materials and Manufacturing Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Bearing capacity of embedded and skirted E-shaped footing on layered sand
Autorzy:
Nazeer, S.
Dutta, R. K.
Powiązania:
https://bibliotekanauki.pl/articles/2055759.pdf
Data publikacji:
2021
Wydawca:
Stowarzyszenie Komputerowej Nauki o Materiałach i Inżynierii Powierzchni w Gliwicach
Tematy:
skirted and embedded E-shaped footing
E-shaped footing
finite element analysis
bearing capacity
layered sandstone
skirt depth
embedment depth
thickness of upper layer
friction angle
stopa fundamentowa
analiza elementów skończonych
nośność podłoża
piaskowiec warstwowy
grubość warstwy wierzchniej
kąt tarcia
Opis:
Purpose: The purpose of this study is to investigate the ultimate bearing capacity of the embedded and skirted E-shaped footing resting on two layered sand using finite element method. The analysis was carried out by using ABACUS software. Design/methodology/approach: The numerical study of the ultimate bearing capacity of the embedded and skirted E-shaped footing resting on layered sand and subjected to vertical load was carried out using finite element analysis. The layered sand was having an upper layer of loose sand of thickness H and lower layer was considered as dense sand of infinite depth. The various parameters varied were the friction angle of the upper (30° to 34°) and lower (42° to 46°) layer of sand, the skirt depth (0B, 0.25B, 0.5B and 1B), the embedment depth (0B, 0.25B, 0.5B and 1B) and the thickness (0.5B, 2B and 4B) of the upper sand layer, where B is the width of the square footing. Findings: The ultimate bearing capacity was higher for the skirted E-shaped footing followed by embedded E-shaped footing and unskirted E-shaped footing in this order for all combinations of variables studied. The improvement in the ultimate bearing capacity for the skirted E-shaped footing in comparison to the embedded E-shaped footing was in the range of 0.31 % to 61.13 %, 30.5 % to 146.31 % and 73.26 % to 282.38% corresponding to H/B ratios of 0.5, 2.0 and 4.0 respectively. The highest increase (283.38 %) was observed at φ1 =30° and φ2 =46° corresponding to H/B and Ds/B ratio of 4.0 and 1.0 respectively while the increase was lowest (0.31 %) at φ1 =34° and φ2 =46° at H/B ratio of 0.5 and Ds/B ratio of 0.5. For the skirted E-shaped footing, the lateral spread was more as in comparison to the embedded E-shaped footing. The bearing capacity of the skirted footing was equal the sum of bearing capacity of the surface footing, the skin resistance developed around the skirt surfaces and tip resistance of the skirt with coefficient of determination as 0.8739. The highest displacement was found below the unskirted and embedded E-shaped footing, and at the skirt tip in the case of the skirted E-shaped footing. Further, the displacement contours generated supports the observations of the multi-edge embedded and skirted footings regarding the ultimate bearing capacity on layered sands. Research limitations/implications: The results presented in this paper were based on the numerical study conducted on E shaped footing made from a square footing of size 1.5 m x 1.5 m. However, further validation of the results presented in this paper, is recommended using experimental study conducted on similar size E shaped footing. Practical implications: The proposed numerical study can be an advantage for the architects designing similar types of super structures requiring similar shaped footings. Originality/value: No numerical study on embedded and skirted E shaped footing resting on layered sand (loose over dense) were conducted so far. Hence, an attempt was made in this article to estimate the bearing capacity of the same footings.
Źródło:
Journal of Achievements in Materials and Manufacturing Engineering; 2021, 108, 1; 5--23
1734-8412
Pojawia się w:
Journal of Achievements in Materials and Manufacturing Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Bearing capacity of rectangular footing on layered sand under inclined loading
Autorzy:
Panwar, V.
Dutta, R. K.
Powiązania:
https://bibliotekanauki.pl/articles/2055743.pdf
Data publikacji:
2021
Wydawca:
Stowarzyszenie Komputerowej Nauki o Materiałach i Inżynierii Powierzchni w Gliwicach
Tematy:
rectangular footing
inclined load
finite element analysis
bearing capacity
layered sand
thickness ratio
friction angle
friction angle of upper sand layers
friction angle of lower sand layers
load inclination
podstawa prostokątna
obciążenie pochyłe
analiza elementów skończonych
nośność podłoża
piaskowiec warstwowy
współczynnik proporcji
kąt tarcia
złoże piaskowe
nachylenie obciążenia
Opis:
Purpose: The study presents the numerical study to investigate the bearing capacity of the rectangular footing on layered sand (dense over loose) using ABAQUS software. Design/methodology/approach: Finite element analysis was used in this study to investigate the bearing capacity of the rectangular footing on layered sand and subjected to inclined load. The layered sand was having an upper layer of dense sand of varied thickness (0.25 W to 2.0 W) and lower layer was considered as loose sand of infinite thickness. The various parameters varied were friction angle of the upper dense (41° to 46°) and lower loose (31° to 36°) layer of sand and load inclination (0° to 45°), where W is the width of the rectangular footing. Findings: As the thickness ratio increased from 0.00 to 2.00, the bearing capacity increased with each load inclination. The highest and lowest bearing capacity was observed at a thickness ratio of 2.00 and 0.00 respectively. The bearing capacity decreased as the load inclination increased from 0° to 45°. The displacement contour shifted toward the centre of the footing and back toward the application of the load as the thickness ratio increased from 0.25 to 1.25 and 1.50 to 2.00, respectively. When the load inclination was increased from 0° to 30°, the bearing capacity was reduced by 54.12 % to 86.96%, and when the load inclination was 45°, the bearing capacity was reduced by 80.95 % to 95.39 %. The results of dimensionless bearing capacity compare favorably with literature with an average deviation of 13.84 %. As the load inclination was changed from 0° to 45°, the displacement contours and failure pattern shifted in the direction of load application, and the depth of influence of the displacement contours and failure pattern below the footing decreased, with the highest and lowest influence observed along the depth corresponding to 0° and 45°, respectively. The vertical settlement underneath the footing decreased as the load inclination increased, and at 45°, the vertical settlement was at its lowest. As the load inclination increased from 0° to 45°, the minimum and maximum extent of influence in the depth of the upper dense sand layer decreased, with the least and highest extent of influence in the range of 0.50 to 0.50 and 1.75 to 2.00 times the width of the rectangular footing, respectively, corresponding to a load inclination of 45° and 0°. Research limitations/implications: The results presented in this paper were based on the numerical study conducted on rectangular footing having length to width ratio of 1.5 and subjected to inclined load. However, further validation of the results presented in this paper, is recommended using experimental study conducted on similar size of rectangular footing. engineers designing rectangular footings subjected to inclined load and resting on layered (dense over loose) sand. Originality/value: No numerical study of the bearing capacity of the rectangular footing under inclined loading, especially on layered soil (dense sand over loose sand) as well as the effect of the thickness ratio and depth of the upper sand layer on displacement contours and failure pattern, has been published. Hence, an attempt was made in this article to investigate the same.
Źródło:
Journal of Achievements in Materials and Manufacturing Engineering; 2021, 108, 2; 49--62
1734-8412
Pojawia się w:
Journal of Achievements in Materials and Manufacturing Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-6 z 6

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies