Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "landsat" wg kryterium: Temat


Wyświetlanie 1-5 z 5
Tytuł:
Improving sub-pixel imperviousness change prediction by ensembling heterogeneous non-linear regression models
Autorzy:
Drzewiecki, W.
Powiązania:
https://bibliotekanauki.pl/articles/145505.pdf
Data publikacji:
2016
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
zmiany klimatyczne
modelowanie hydrologiczne
las
machine learning
model ensembles
sub-pixel classification
Landsat
Opis:
In this work nine non-linear regression models were compared for sub-pixel impervious surface area mapping from Landsat images. The comparison was done in three study areas both for accuracy of imperviousness coverage evaluation in individual points in time and accuracy of imperviousness change assessment. The performance of individual machine learning algorithms (Cubist, Random Forest, stochastic gradient boosting of regression trees, k-nearest neighbors regression, random k-nearest neighbors regression, Multivariate Adaptive Regression Splines, averaged neural networks, and support vector machines with polynomial and radial kernels) was also compared with the performance of heterogeneous model ensembles constructed from the best models trained using particular techniques. The results proved that in case of sub-pixel evaluation the most accurate prediction of change may not necessarily be based on the most accurate individual assessments. When single methods are considered, based on obtained results Cubist algorithm may be advised for Landsat based mapping of imperviousness for single dates. However, Random Forest may be endorsed when the most reliable evaluation of imperviousness change is the primary goal. It gave lower accuracies for individual assessments, but better prediction of change due to more correlated errors of individual predictions. Heterogeneous model ensembles performed for individual time points assessments at least as well as the best individual models. In case of imperviousness change assessment the ensembles always outperformed single model approaches. It means that it is possible to improve the accuracy of sub-pixel imperviousness change assessment using ensembles of heterogeneous non-linear regression models.
Źródło:
Geodesy and Cartography; 2016, 65, 2; 193-218
2080-6736
2300-2581
Pojawia się w:
Geodesy and Cartography
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Thorough statistical comparison of machine learning regression models and their ensembles for sub-pixel imperviousness and imperviousness change mapping
Autorzy:
Drzewiecki, W.
Powiązania:
https://bibliotekanauki.pl/articles/145416.pdf
Data publikacji:
2017
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
modele regresji
nieprzepuszczalność
subpiksel
impervious area
sub-pixel classification
machine learning
model ensembles
Landsat
Opis:
We evaluated the performance of nine machine learning regression algorithms and their ensembles for sub-pixel estimation of impervious areas coverages from Landsat imagery. The accuracy of imperviousness mapping in individual time points was assessed based on RMSE, MAE and R2. These measures were also used for the assessment of imperviousness change intensity estimations. The applicability for detection of relevant changes in impervious areas coverages at sub-pixel level was evaluated using overall accuracy, F-measure and ROC Area Under Curve. The results proved that Cubist algorithm may be advised for Landsat-based mapping of imperviousness for single dates. Stochastic gradient boosting of regression trees (GBM) may be also considered for this purpose. However, Random Forest algorithm is endorsed for both imperviousness change detection and mapping of its intensity. In all applications the heterogeneous model ensembles performed at least as well as the best individual models or better. They may be recommended for improving the quality of sub-pixel imperviousness and imperviousness change mapping. The study revealed also limitations of the investigated methodology for detection of subtle changes of imperviousness inside the pixel. None of the tested approaches was able to reliably classify changed and non-changed pixels if the relevant change threshold was set as one or three percent. Also for fi ve percent change threshold most of algorithms did not ensure that the accuracy of change map is higher than the accuracy of random classifi er. For the threshold of relevant change set as ten percent all approaches performed satisfactory.
Źródło:
Geodesy and Cartography; 2017, 66, 2; 171-209
2080-6736
2300-2581
Pojawia się w:
Geodesy and Cartography
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Sub-pixel classification of middle-resolution satellite images – evaluation of regression trees applicability to monitor impervious surfaces coverage
Podpikselowa klasyfikacja średniorozdzielczych obrazów satelitarnych – ocena możliwości zastosowania drzew regresji w monitoringu pokrycia terenu powierzchniami nieprzepuszczalnymi
Autorzy:
Drzewiecki, W.
Powiązania:
https://bibliotekanauki.pl/articles/385386.pdf
Data publikacji:
2010
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
wskaźnik nieprzepuszczalności
mapy pokrycia terenu
drzewa regresji
teledetekcja satelitarna
Landsat TM
imperviousness index
land cover mapping
regression trees
satellite remote sensing
Opis:
The aim of the presented research was to test the method of assessing the imperviousness index on the basis of middle-resolution satellite images with the use of regression trees. The task also included evaluation of the applicability of the method to monitor the changes of impervious surfaces coverage. The research has been done in the catchments of Prądnik and Dłubnia rivers (Malopolska region, Poland). The imperviousness index has been assessed for two time periods – current state (2007) and the mid-1990s. The training and verification data for both time periods have been obtained from aerial orthophotomaps for urban, suburban, rural, industrial and commercial areas. In both time states the best assessment of imperviousness index have been achieved for the variants where the regression trees were built on the basis of all satellite data accessible for the time period. However, it is worth notifying that the variant with the input data limited to three images from spring, summer and autumn provided comparable accuracy of the results. These models have the systematic error between 1.3–2.2%, the mean error between 15.8–16.4% and correlation coefficient between 0.85-0.86 for the mid-1990s. For the year 2009 these values are respectively: 1.4–1.7%, 15.7–16.0% and 0.86. The accuracy of the imperviousness index obtained in the present research is comparable with the accuracy obtained with the use of regression trees in research reported in the literature. The comparison has shown high accuracy of imperviousness index change assessment for the whole population of pixels in verification dataset. The systematic error is 0.1%. However, the obtained assessment accuracy for a single pixel (š14.5%) can be too low for some applications.
Celem prezentowanych badań było sprawdzenie możliwości zastosowania drzew regresji do szacowania wskaźnika nieprzepuszczalności powierzchni terenu na podstawie średniorozdzielczych obrazów satelitarnych. W ramach badań przeprowadzona została również ocena stosowalności tej metody jako narzędzia monitoringu pokrycia terenu powierzchniami nieprzepuszczalnymi. Badania przeprowadzono na obszarze obejmującym zlewnie rzek Prądnik i Dłubnia. Wskaźnik nieprzepuszczalności oszacowano dla dwóch stanów czasowych – roku 2007 i połowy lat 90. XX wieku. W obu przypadkach dane treningowe i weryfikacyjne pozyskano z ortofotomap lotniczych dla obszarów o zróżnicowanym użytkowaniu (terenów zabudowy miejskiej, podmiejskiej, wiejskiej, przemysłowej oraz handlowej). W przypadku obu stanów czasowych najlepsze oszacowanie wskaźnika nieprzepuszczalności uzyskano w wariantach, w których do budowy drzew regresji użyto wszystkich dostępnych obrazów satelitarnych z poszczególnych okresów. Na uwagę zasługuje jednak fakt, iż porównywalną dokładność oszacowania uzyskano także w wariantach, w których dane wejściowe ograniczone były jedynie do trzech obrazów pozyskanych w okresie wiosennym, letnim i jesiennym. Zbudowane modele pozwalały na oszacowanie wskaźnika nieprzepuszczalności dla stanu z połowy lat 90. z błędem przeciętnym wynoszącym 1.3–2.2%, błędem średnim pomiędzy 15.8% a 16.4% oraz współczynnikiem korelacji w granicach 0.85–0.86. Dla roku 2007 wartości te wyniosły odpowiednio: 1.4–1.7%, 15.7–16.0% i 0.86. Uzyskany w prezentowanych badaniach poziom dokładności oszacowania wartości wskaźnika nieprzepuszczalności jest porównywalny z wynikami uzyskiwanymi z zastosowaniem drzew regresji przez innych autorów. Ocena dokładności oszacowania zmian wskaźnika nieprzepuszczalności wykazała bardzo wysoką dokładność ich określenia w odniesieniu do całości populacji pikseli w próbce weryfikacyjnej. Błąd systematyczny wyniósł w tym przypadku 0.1%. Należy jednak zauważyć, iż uzyskany dla pojedynczego piksela błąd średni na poziomie š14.5% może być zbyt duży dla niektórych zastosowań takiego podejścia jako narzędzia monitoringu zmian pokrycia powierzchni terenu.
Źródło:
Geomatics and Environmental Engineering; 2010, 4, 4; 61-75
1898-1135
Pojawia się w:
Geomatics and Environmental Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Application of Landsat imagery based vegetation indices to imperviousness index mapping
Zastosowanie indeksów wegetacji do opracowywania map współczynnika nieprzepuszczalności na podstawie obrazów z satelity Landsat
Autorzy:
Drzewiecki, W.
Osak, A.
Powiązania:
https://bibliotekanauki.pl/articles/385630.pdf
Data publikacji:
2009
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
wskaźnik nieprzepuszczalności
mapy pokrycia terenu
indeksy wegetacji
teledetekcja satelitarna
Landsat TM
imperviousness index
land cover mapping
vegetation indices
satellite remote sensing
Opis:
The paper focuses on imperviousness index mapping with satellite remote sensing approach based on vegetation indices. Imperviousness factor can be defined as a percent of the total considered area covered by impervious surfaces (any materials that are impervious to water, such as rooftops, streets, driveways, parking lots, etc). With Landsat TM images comparable maps can be obtained for the time period from mid-80s to present. The imperviousness factor map of City of Cracow was prepared for 1996. Imperviousness factor accuracy was estimated for 20 percent.
W publikacji przedstawiono zastosowanie teledetekcyjnej metody opartej na wskaźnikach wegetacji do sporządzania map współczynnika nieprzepuszczalności. Mapy te przedstawiają w odniesieniu do każdego piksela obrazu satelitarnego procentowy udział powierzchni o charakterze nieprzepuszczalnym, takich jak np. dachy budynków, drogi asfaltowe, parkingi itp. Wykorzystanie obrazów satelitarnych Landsat TM pozwala na uzyskanie porównywalnych map dla okresu od połowy lat 80. XX. wieku do chwili obecnej. Opracowanie wykonano dla obszaru Krakowa w roku 1996. Uzyskana dokładność oszacowania współczynnika nieprzepuszczalności wyniosła 20 procent.
Źródło:
Geomatics and Environmental Engineering; 2009, 3, 4; 43-52
1898-1135
Pojawia się w:
Geomatics and Environmental Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Mapy podstawowych form pokrycia i użytkowania terenu zlewni Raby powyżej Zbiornika Dobczyckiego - porównanie dokładności klasyfikacji pikselowej i obiektowej obrazów LANDSAT TM
Mapping of basic land-use/land cover types in upper Raba watershed - accuracy comparison of pixel-based and object-based approaches to LANDSAT TM images classification
Autorzy:
Badurska, M.
Drzewiecki, W.
Tokarczyk, P.
Powiązania:
https://bibliotekanauki.pl/articles/132383.pdf
Data publikacji:
2009
Wydawca:
Polskie Towarzystwo Geograficzne
Tematy:
Landsat TM
klasyfikacja pikselowa
klasyfikacja obiektowa
ocena
dokładność klasyfikacji
zlewnia Raby
pokrycie i użytkowanie terenu
pixel based classification
object-based classification
classification accuracy assessment
Raba watershed
land-use
land cover
Opis:
The research presented in the paper has been aimed at mapping the basic types of land-use in the upper Raba watershed (south Poland). The maps have been prepared for a study of the influence of land-use changes within the watershed on the sediment yields introduced into the reservoir. Because the erosion models used for sediment yields prediction need only to identify the main land-use / land cover classes (arable land, meadows and pastures, forests, waters, developed areas), the maps have been based on classification of middle-resolution satellite images (Landsat TM). In the research the results of traditional pixel-based classification were compared to the ones obtained in the object based approach. Six different Landsat TM images were classified. The methodology of both classification approaches have been described in the paper. The accuracy assessment of the classification results was based on their comparison with the land use types defined by the photo interpretation of colour composite images. The assessment was done by two operators. Each of them used different set of two hundred and fifty randomly generated sample points. In most cases the pixel-based approach resulted in higher overall accuracy. However, if overall accuracy confidence intervals are taken into consideration, none of the methods can be definitely recognised as a better one.
Źródło:
Teledetekcja Środowiska; 2009, 42; 15-21
1644-6380
Pojawia się w:
Teledetekcja Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies