- Tytuł:
-
Spektrometria mas w rozróżnianiu związków chiralnych
Chiral recognition by mass spectrometry - Autorzy:
- Drabik, E.
- Powiązania:
- https://bibliotekanauki.pl/articles/172040.pdf
- Data publikacji:
- 2011
- Wydawca:
- Polskie Towarzystwo Chemiczne
- Tematy:
-
spektrometria mas
rozróżnianie związków chiralnych
związki chiralne
oddziaływania typu gość-gospodarz
metoda kinetyczna
reakcje kompleksów jon–cząsteczka
spektrometria ruchliwości jonów
mass spectrometry
chiral recognition
kinetic method
host–guest interaction
ion-molecule reaction
ion mobility spectrometry - Opis:
- The phenomenon of optical activity was discovered by Louis Pasteur in 1848. Since this time, chirality of organic compounds observed in biological systems has became a central theme in scientific research. Synthesis and quantitation of enantiomerically pure compounds is important for a wide range of applications. Chirally pure compounds are required not only by pharmacology, but they are also of interest in cosmetic and food industry and many other applications. Similarity of enantiomers in their chemical and physical properties, except for optical rotation, makes their separation and detection very difficult. Until now, many methods have been used for the enantioselective discrimination of organic compounds, including nuclear magnetic resonance spectroscopy (NMR), circular dichroism (CD), capillary electrophoresis (CE) and chromatography (GC, HPLC), where an interference of a solvent cannot be excluded. Recent studies have shown that mass spectrometry (MS) is an alternative approach to traditional method for chiral recognition and determination of enantiomeric composition. Although, mass spectrometry has been considered as insensitive to chirality because enantiomers have the same mass and show identical mass spectra, it is now accepted as important tool for differentiating of enantiomeric compounds through their interactions with chiral reference molecules (Fig. 1). The ability to transfer diastereomeric non-covalent complexes between chiral selectors and analyte enantiomers, which differ in stability, into the gas-phase and measure such differences trough mass spectrometric ion abundances, has appeared with development of soft ionization techniques such electrospray ionization (ESI), fast atom bombardment (FAB) and matrix-assisted laser desorption/ionization (MALDI). Mass spectrometry-based methods for chiral recognition and quantitative determination of enantiomeric purity are attractive due to their speed, high sensitivity, low sample consumption, tolerance to impurities and ability to probe the analyte in a solvent free environment. Currently, there are four well-defined approaches for determining a measure of enantiomer discrimination, using either single-stage or tandem mass spectrometry. They can be classified into the following categories: (1) measurement of the relative abundance of diastereomeric complexes between chiral reference compound and the enantiomers (usually one isotopically labeled [10]), (2) enantioselective ion/molecule reaction between diastereomeric complexes and chiral or achiral reactants [11], (3) kinetic method [12] and (4) collision-induced dissociation (CID) of diastereomeric adducts in a tandem mass spectrometry (MS/MS) experiment [61, 62]. Over the past decade, new approaches to chiral separation and analysis of enantiomers have been introduced, where molecules are separated based on their mobility (ion mobility spectrometry) [66].
- Źródło:
-
Wiadomości Chemiczne; 2011, 65, 7-8; 609-649
0043-5104
2300-0295 - Pojawia się w:
- Wiadomości Chemiczne
- Dostawca treści:
- Biblioteka Nauki