- Tytuł:
- Edge waves over a shelf
- Autorzy:
-
Dolai, P.
Dolai, D. P. - Powiązania:
- https://bibliotekanauki.pl/articles/264611.pdf
- Data publikacji:
- 2019
- Wydawca:
- Uniwersytet Zielonogórski. Oficyna Wydawnicza
- Tematy:
-
fala brzegowa
wielomian Gegenbauera
relacja dyspersji
shelf
edge wave
Havelock expansion
Galerkin approximation
Gegenbauer polynomial
dispersion relation - Opis:
- The problem considered in this paper is the derivation of properties of edge waves travelling along a submerged horizontal shelf. The problem is formulated within the framework of the linearized theory of water waves and Havelock expansions of water wave potentials are used in the mathematical analysis to obtain the dispersion relation for edge waves in terms of an integral. Appropriate multi-term Galerkin approximations involving ultra spherical Gegenbauer polynomials are utilized to obtain a very accurate numerical estimate for the integral and hence to derive the properties of edge waves over a shelf. The numerical results are illustrated in a table and curves are presented showing the variation of frequency of the edge waves with the width of the shelf.
- Źródło:
-
International Journal of Applied Mechanics and Engineering; 2019, 24, 2; 453-460
1734-4492
2353-9003 - Pojawia się w:
- International Journal of Applied Mechanics and Engineering
- Dostawca treści:
- Biblioteka Nauki