Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "microwave synthesis" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
A Comparative Study of the Feasibility of Cellular MAX Phase Preforms Formation by Microwave-Assisted SHS and SPS Techniques
Autorzy:
Dmitruk, A.
Lagos, M.
Naplocha, K.
Egizabal, P.
Powiązania:
https://bibliotekanauki.pl/articles/352206.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
MAX phases
SHS synthesis
microwave
SPS
porous preform
Opis:
Two methods were evaluated in terms of manufacturing of MAX phase preforms characterized with open porosity: microwave-assisted self-propagating high-temperature synthesis (SHS) and spark plasma sintering (SPS). The main purpose of fabrication of such open-porous preforms is that they can be successfully applied as a reinforcement in metal matrix composite (MMC) materials. In order to simulate the most similar conditions to microwave-assisted SHS, the sintering time of SPS was significantly reduced and the pressure was maintained at a minimum value. The chosen approach allows these two methods to be compared in terms of structure homogeneity, complete reactive charge conversion and energy effectivity. Study was performed in Ti-Al-C system, in which the samples were compacted from elemental powders of Ti, Al, C in molar ratio of 2:1:1. Manufactured materials after syntheses were subjected to SEM, XRD and STEM analyses in order to investigate their microstructures and chemical compositions. As was concluded, only microwave-assisted SHS synthesis allows the creation of MAX phases in the studied system. SPS technique led only to the formation of intermetallic secondary phases. The fabrication of MAX phases’ foams by microwave-assisted SHS presents some interesting advantages compared to conventional manufacturing methods. This work presents the characterization of foams obtained by microwave-assisted SHS comparing the results with materials produced by SPS. The analysis of SPS products for different sintering temperatures provided the better insight into the synthesis of MAX phases, supporting the established mechanism. Dissimilarities in the heating mechanisms that lead to the differing synthesis products were also discussed.
Źródło:
Archives of Metallurgy and Materials; 2020, 65, 2; 575-582
1733-3490
Pojawia się w:
Archives of Metallurgy and Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Manufacturing of Al Alloy Matrix Composite Materials Reinforced with MAX Phases
Autorzy:
Dmitruk, A.
Naplocha, K.
Powiązania:
https://bibliotekanauki.pl/articles/382950.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
MAX phase
SHS synthesis
microwave
porous structure
squeeze casting
faza MAX
synteza SHS
mikrofala
struktura porowata
Opis:
A method for manufacturing of Al-Si alloy (EN AC-44200) matrix composite materials reinforced with MAX type phases in Ti-Al-C systems was developed. The MAX phases were synthesized using the Self-propagating High-Temperature Synthesis (SHS) method in its microwave assisted mode to allow Ti2AlC and Ti3AlC2 to be created in the form of spatial structures with open porosity. Obtained structures were subjected to the squeeze casting infiltration in order to create a composite material. Microstructures of the produced materials were observed by the means of optical and SEM microscopies. The applied infiltration process allows forming of homogeneous materials with a negligible residual porosity. The obtained composite materials possess no visible defects or discontinuities in the structure, which could fundamentally deteriorate their performance and mechanical properties. The produced composites, together with the reference sample of a sole matrix material, were subjected to mechanical properties tests: nanohardness or hardness (HV) and instrumental modulus of longitudinal elasticity (EIT).
Źródło:
Archives of Foundry Engineering; 2018, 18, 2; 198-202
1897-3310
2299-2944
Pojawia się w:
Archives of Foundry Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies