Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "recognition algorithm" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Rozpoznawanie wzorców cyfrowych za pomocą robota edukacyjnego
Digits recognition using an educational robot
Autorzy:
Dimitrova-Grekow, T.
Grodzki, D.
Powiązania:
https://bibliotekanauki.pl/articles/156236.pdf
Data publikacji:
2014
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
optyczne rozpoznawanie znaków
algorytm ROI
edukacyjny robot
Optical Character Recognition
region of Interest algorithm
educational robot
Opis:
Artykuł przedstawia system rozpoznający liczby rzymskie przy użyciu edukacyjnego zestawu Mindstorms NXT. Algorytm OCR wybrany do rozpoznania znaków został oparty na klasyfikacji cech. Zaadaptowana wersja algorytmu Region of Interest ROI i klasyfikacja cech są głównymi atutami tej pracy. System został skutecznie przetestowany pod wieloma względami. Powstała konstrukcja umożliwiająca skanowanie kartki formatu A4, a obsługujący ją program umożliwia prawidłową interpretację zeskanowanych liczb rzymskich.
Pattern recognition is always associated with powerful calculation [1, 2]. A specific branch in this area is Optical Character Recognition [3, 4, 5] where one of the most popular techniques is Feature Extraction, also known as Intelligent Character Recognition [6]. All ICR algorithms are topological [7, 8, 9]. This paper presents an implementation of Roman Number Recognition system realized on LEGO Mindstorms NXT educational robot. The main point is successful minimalistic realization of an on-board pattern recognition system. The NXT platform allows also an easy reconfiguration of the hardware and more building freedom without extra costs (Fig. 1.). An adapted version of the ROI algorithm is implemented [10]. Based on the extracted features (Fig. 2.) a classification of the roman digits is proposed (Fig. 3.). The final stage of the program includes segmentation, end result calculation and visualization of it on the robot screen. The conducted experimental tests proved a 100% efficiency for digit and number recognition having a process in optimal conditions and quite good stability for the optical noises (Fig. 4.) and color chances (Tab. 1). In spite of many drawbacks of the hardware, the implemented system seems very perspective and invokes many ideas toward pattern recognition technics.
Źródło:
Pomiary Automatyka Kontrola; 2014, R. 60, nr 5, 5; 284-287
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie algorytmów przeszukiwania grafów do analizy obrazów medycznych
Analysis of medical images based on graph search algorithms
Autorzy:
Dimitrova-Grekow, T.
Dąbkowski, A.
Powiązania:
https://bibliotekanauki.pl/articles/156629.pdf
Data publikacji:
2012
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
analiza obrazów medycznych
algorytmy przeszukiwania grafów
uczenie maszynowe
eksploracja danych
rozpoznawanie choroby
image analysis
graph search algorithm
machine learning
data mining
disease recognition
Opis:
W artykule przedstawiono wyniki testów niekonwencjonalnego zastosowania metod do przeszukiwania grafów w celu analizy obrazów powstałych z rezonansu magnetycznego głowy. Zaprezentowano GUI do automatycznej obróbki serii obrazów. Zbudowane klasyfikatory wykazały, że metoda BFS analizy plików DICOM, po odpowiednej selekcji cech, pozwala na 100% rozpoznawanie chorych na wodogłowie i ponad 90% zdrowych, co zachęca do dalszych badań i obserwacji, np. czy osoby sklasyfikowane błędnie jako chorzy, po czasie rzeczywiście nie rozwinęli tej choroby.
There are many methods for image segmentation [1, 2]: threshold, area, edge and hybrid methods. Area methods indicate groups of similar pixels form local regions [3, 4]. Edge methods detect boundaries between homogeneous segments [5, 6, 7]. In this paper we present the results of tests of unconventional implementation of graph search methods for the analysis of images generated from magnetic resonance imaging [8]. We explored the effectiveness of different approaches for dividing areas within a similar gray scale, using adapted graph search algorithms (DFS, BFS) after appropriate modification (Fig. 1). For this purpose, the Weka package (a tool for pre-processing, classification, regression, clustering and data visualization) was used [9]. A training set was generated after analyzing all the series of images from the database. First, we evaluated models created using certain algorithms and compared their efficacy (Tab. 1). This was followed by a selection of attributes (Tab. 2) and a re-evaluation of the models (Tab. 3). Comparison of the results of both evaluations showed that after selection of the relevant product attributes, you can achieve up to 100% detection of patients with hydrocephalus and over 90% proper recognition of healthy persons. This encourages further research and observation, such as whether persons wrongly classified as sick actually developed the disease in time. We designed a web application for the study, written in Windows Azure, as well as a GUI for automatic processing of a series of images (Fig. 2).
Źródło:
Pomiary Automatyka Kontrola; 2012, R. 58, nr 7, 7; 578-580
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies