Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "high-resolution" wg kryterium: Wszystkie pola


Wyświetlanie 1-3 z 3
Tytuł:
Ocena możliwości wykorzystania wysokorozdzielczych zobrazowań satelitarnych w rozpoznaniu obrazowym
Evaluation of high resolution satellite imagery in image reconnaissance
Autorzy:
Dąbrowski, R.
Orych, A.
Walczykowski, P.
Powiązania:
https://bibliotekanauki.pl/articles/130876.pdf
Data publikacji:
2010
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
teledetekcja
rozpoznanie obrazowe
potencjał interpretacyjny
NIIRS
GSD
GRD
GIQE
remote sensing
image reconnaissance
Opis:
Rozpoznanie obrazowe jest to całokształt przedsięwzięć mających na celu pozyskanie i zarejestrowanie dużej ilości informacji o terenie w postaci zobrazowań, których jakość i trwałość umożliwia ich przetwarzanie, interpretację, dystrybucję oraz archiwizację. Zobrazowania wykorzystywane do celów rozpoznawczych są pozyskiwane w różnym zakresie spektrum elektromagnetycznego za pomocą sensorów umieszczonych na platformach, poruszających się w przestrzeni na zróżnicowanych wysokościach. Ich wspólnym mianownikiem jest wysoka aktualność. W przeciągu ostatnich kilku lat dostępność danych obrazowych, a szczególnie wysokorozdzielczych zobrazowań pozyskiwanych z pułapu satelitarnego, znacząco wzrosła. Dlatego też potrzeba pomiaru jakości lub użyteczności obrazu ma podstawowe znaczenie dla opracowywania i działania systemów zobrazowania. Rozdzielczość jako środek do oceny jakości obrazu, mimo że jest powszechnie akceptowana, posiada znaczące niedoskonałości, ponieważ nie odnosi się bezpośrednio do możliwości interpretacji obrazu i w rezultacie może dać niejednoznaczne wyniki. Ponadto, pomiar rozdzielczości wymaga wprowadzenia specjalnie zaprojektowanych celów kontrolnych do każdego ocenianego obrazu. W celu wyeliminowania wad rozdzielczości opracowana została w latach 70-tych w USA skala możliwości interpretacji zobrazowań NIIRS. Skala NIIRS (z ang. National Imagery Interpretability Rating Scale) jest wykorzystywana przez analityków do przypisania obrazowi liczby wskazującej możliwości jego interpretacji. Możliwości interpretacji są definiowane jako miara użyteczności obrazu do analizy lub celów eksploatacji. NIIRS zapewnia ogólną skalę, która może być wykorzystywana do różnych systemów zobrazowania, daje unikalne narzędzie do obiektywnego pomiaru subiektywnej wartości charakteryzującej możliwości interpretacji obrazu. Celem artykułu jest przedstawienie możliwości oceny jakości interpretacyjnej wysokorozdzielczych danych satelitarnych w oparciu o skalę NIIRS.
Image reconnaissance is a range of actions aiming at gaining and recording information about a terrain in the form of images with precisely specified coordinates. Their quality and durability enable processing, interpretation, distribution and collecting. Images are acquired in different ranges of electromagnetic spectrum by sensors situated on platforms moving in space at different altitudes. Their most essential feature is being very up-to-date. In the last few years access to imagery data and especially high resolution images acquired from satellite altitudes rose significantly. That is why, the need to measure their quality and usefulness is essential to developing and functioning of imagery systems. Resolution, as a means of image quality evaluation, is commonly accepted despite the fact that it has significant drawbacks. The most important is that it is not directly related to the possibility of image interpretation and can give obscure results. What is more, measurement of resolution requires introducing specially developed calibration targets to every evaluated image. In order to eliminate the disadvantages of using resolution as a measure, in the 1970s in USA the National Imagery Interpretability Rating Scale (NIIRS) was created. It is used by analysts to attribute an image a number that indicates the possibility of conducting its interpretation. The interpretational capacity is defined as a measure of usefulness of the image for analysis or exploitation. The NIIRS provides a scale that can be used with different imaging systems and which is a unique tool for objective measurement of a subjective value characterizing the image interpretational capacity. The main purpose of this paper is to present an evaluation of the interpretational quality of images based on high resolution satellite data using NIIRS.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2010, 21; 75-86
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Opracowanie cyfrowej ortofotomapy terenów niedostępnych z wysokorozdzielczych danych satelitarnych
The use of high resolution satellite data in generating a digital ortoimage of an inaccessible area
Autorzy:
Dąbrowski, R.
Kędzierski, M.
Wilińska, M.
Powiązania:
https://bibliotekanauki.pl/articles/209935.pdf
Data publikacji:
2011
Wydawca:
Wojskowa Akademia Techniczna im. Jarosława Dąbrowskiego
Tematy:
fotogrametria
VHRS
orientacja zobrazowań
teren niedostępny
dryft satelity
ortoobraz
photogrammetry
inaccessible area
sensor orientation
satellite drift
orthoimage
Opis:
Dynamiczny rozwój technologiczny satelitów obrazujących powierzchnię Ziemi doprowadził do powstania wysokorozdzielczych systemów satelitarnych - VHRS (z ang. Very High Resolution Satellite). Dane obrazowe pozyskiwane z ich systemów posiadają szerokie spektrum zastosowania w różnych dziedzinach gospodarki. Wiodącym produktem jest cyfrowa orotofotomapa. Istotnym problemem jest jej generowanie na tereny niedostępne. W tym ujęciu teren niedostępny to fragment powierzchni Ziemi, na którym nie ma możliwości pomiaru osnowy fotogrametrycznej, z powodu innego niż technologiczny. W celu rozwiązania powyższego problemu przeprowadzono badania, których wyniki oraz wnioski zawarte są w artykule.
The dynamic technological development of satellites imaging the Earth's surface prompted an appearance of Very High Resolution Satellite (VHRS). Imagery data acquired from such satellites have very wide range of applications in different branches of economic activity. The most popular product is digital ortoimage. However, its generating for inaccessible area is a very essential problem. An inaccessible area means an area of the Earth's surface where it is impossible, from the reason other than technological, to measure reference points. To solve this problem, a series of research were conducted. Their results and conclusions are presented in this paper.
Źródło:
Biuletyn Wojskowej Akademii Technicznej; 2011, 60, 3; 197-213
1234-5865
Pojawia się w:
Biuletyn Wojskowej Akademii Technicznej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analiza wpływu korekcji biasu na dokładność produktów fotogrametrycznych z wysokorozdzielczych danych satelitarnych
The analysis of the effect of bias correction on the accuracy of photogrammetric products derived from high resolution satellite data
Autorzy:
Wilińska, M.
Kędzierski, M.
Dąbrowski, R.
Powiązania:
https://bibliotekanauki.pl/articles/209903.pdf
Data publikacji:
2011
Wydawca:
Wojskowa Akademia Techniczna im. Jarosława Dąbrowskiego
Tematy:
fotogrametria
GeoEye-1
Ikonos-2
RPC
korekcja bias
orientacja scen stereo
NMT
ortoobraz
photogrammetry
bias compensation
sensor orientation
DTM
orthoimage
Opis:
Celem pracy było przeprowadzenie analizy orientacji scen stereo w zależności od liczby wykorzystanych fotopunktów, zbadanie wpływu odchyleń standardowych biasu na wyniki orientacji oraz ocena dokładnościowa numerycznych modeli terenu i ortoobrazów wygenerowanych z wysokorozdzielczych zobrazowań satelitarnych pozyskanych z satelitów GeoEye-1 oraz Ikonos-2. W literaturze anglojęzycznej tematykę biasu, czyli poprawki wynikającej z podniesienia dokładności korekcji RPC (ang. Rational Polynomial Coefficient), poruszają w swoich artykułach C. S. Fraser oraz H. B. Hanley. Podejmują oni głównie problem orientacji wysokorozdzielczych zobrazowań satelitarnych oraz wpływ biasu na jej wynik. W Polsce na temat ten napisano niewiele referatów, dlatego też nasz zespół zdecydował się na przeprowadzenie niezbędnych badań i analiz. Satelita GeoEye-1, po umieszczeniu na orbicie we wrześniu 2008 roku, osiągnął swoją pełną zdolność operacyjną już w lutym 2009 roku. Jako jeden z pierwszych dostarczał zobrazowań o półmetrowej rozdzielczości przestrzennej w zakresie panchromatycznym. Dlatego też przedmiotem badań były dwie panchromatyczne stereopary - jedna pozyskana właśnie z satelity GeoEye-1, a druga z Ikonos-2 wystrzelonego w 1999 roku. Zarówno Ikonos-2, jak i GeoEye-1 są reprezentatywnymi satelitami dostarczającymi wysokorozdzielczych danych obrazowych. Charakteryzują się podobnymi parametrami technicznymi, własnościami orbity, pozyskują zobrazowania w trybie panchromatycznym i wielospektralnym, a także dostarczają zobrazowań o rozdzielczości przestrzennej w zakresie panchromatycznym poniżej 1 metra. Opracowane stereopary przedstawiają miasto Hobart (Australia) oraz jego okolice. Jest to teren zróżnicowany topograficznie, obejmujący zatokę, obszar silnie zurbanizowany oraz zalesione pasmo górskie. Zakres wysokości obejmuje przedział około od 0 do 1300 m. Zróżnicowanie wysokościowe opracowywanego terenu miało znaczący wpływ na jakość finalnych produktów fotogrametrycznych, co również zostało przeanalizowane. Do opracowania wykorzystano część osnowy fotogrametrycznej pomierzonej w 2004 roku techniką GPS. Do orientacji użyto 19 fotopunktów. Istotą poniższych rozważań było porównanie wyników orientacji przeprowadzonej przy różnej liczbie fotopunktów, z zachowaniem stałej konfiguracji punktów kontrolnych. Na podstawie przeprowadzonej analizy określona została liczba fotopunktów właściwa dla orientacji każdej stereopary. Kolejnym zagadnieniem była korekcja biasu w RPC. Przeprowadzona została analiza zależności zachodzących pomiędzy obrazem a terenem podczas orientacji zobrazowań oraz opisano równania poprawek służące eliminacji biasu przed i po orientacji zewnętrznej, przeprowadzonej na podstawie oryginalnych RPC. Istotną kwestią było określenie zależności między wartością błędu RMS (ang. Root Mean Square) wykonanej orientacji a odchyleniem standardowym biasu w kierunkach osi układu obrazowego (wiersza i kolumny - ng. line i sample). Po określeniu liczby fotopunktów odpowiedniej do wykonania orientacji oraz najkorzystniejszych wartości odchyleń standardowych biasu w obu kierunkach, wygenerowane zostały numeryczne modele terenu. Zastosowano cyfrową korelację obrazów metodą ABM (ang. Area Based Matching). Wynikowy rozmiar pikseli numerycznych modeli terenu generowanych z obu stereopar wyniósł 10 m. Powstałe modele przebadano pod kątem dokładności pionowej położenia punktu, poprzez porównanie wysokości pomierzonych techniką GPS z tożsamymi wysokościami pomierzonymi na danym modelu wysokościowym. Kolejnym etapem było wygenerowanie ortoobrazów z pojedynczych zdjęć ze stereopary oraz przeanalizowanie ich dokładności. Wymiar oczka generowanych produktów fotogrametrycznych wyniósł odpowiednio dla GeoEye-1 0,5 m i 1 m dla Ikonosa-2. Analiza dokładności została przeprowadzona na podstawie porównania odległości między punktami kontrolnymi, pomierzonymi na ortoobrazach i niebiorącymi udziału w orientacji, a odległościami obliczonymi ze współrzędnych pomierzonych za pomocą techniki GPS. Opracowanie to dotyczy wyżej wymienionych zagadnień. Całość została zakończona podsumowaniem oraz wnioskami wynikłymi w trakcie badań.
The major purpose of this paper is to analyse stereopair orientation and bias compensation in rational polynomial coefficients. Moreover, the accuracy of digital terrain models and orthoimages generated from high-resolution satellite images acquired by GeoEye-1 and Ikonos-2 was evaluated. Bias, so the correction caused by increasing the accuracy of the RPC (Rational Polynomial Coefficient) correction, had been mentioned in a number of English articles by C. S. Fraser and H. B . H anley. They discuss the problem of orientation with regards to high resolution satellite imagery and the influence of bias on the results of this orientation. In Poland, there are not many publications concerning this topic, which is why our research team had decided to conduct the necessary research and analyses. GeoEye-1, launched in September 2008, commenced full commercial operations in February, 2009. As one of the first satellites it develops panchromatic images in a half-meter resolution. That is why the subject of this research are two panchromatic stereoscenes - one acquired by GeoEye-1, and second by Ikonos-2, launched in 1999. Both of them are representative satellites acquiring high-resolution image data. They have similar technique parameters, orbit characteristics, get images in panchromatic and multispectral modes and develop panchromatic scenes in less than 1-meter resolution. Used stereoscenes show the city of Hobart (Australia) and its neigbourhood. This area has variabled topography and includes the bay, strongly urban terrain and mountains covered with forest. The heights reach around from 0 to 1300 meters. This height variety can has significant impact on final photogrammetric products, what also was studied. In the project we used the part of the test field measured in 2004 by GPS, consisting of 19 control points which were used for orientation. The issue of this paper will be comparison of orientation effects carried on the different number of control points without changes in check point configuration. Depending on the analysis, the accurate number of control points to orientation of each stereoscenes was chosen. The next problem was bias compensation in RPC (Rational Polynomial Coefficients). An analysis of the relation had been conducted during scene orientation. Moreover, the correction equations of bias compensation before and after orientation depending on original RPC will be described. The important problem will be indication of relation between RMS error of orientation and standard deviation of line and sample in bias correction. After indication of the number of control points accurate to orientation and the most profitable parameters of line and sample, we generated digital terrain models. We used ABM correlation method. Output cell size for both of stereopairs was equal to 10 meters. Generated digital terrain models were studied in the aspect of point height accuracy by the comparison of heights measured by GPS with elevations measured on explored terrain models. The next stage was generation of orthoimages from single scenes of steropairs and analysis of their accuracy. The output cell size of generated photogrammetric products was equal to 0.5 and 1 meter for GeoEye-1 and Ikonos-2. Analysis of accuracy was provided in dependence on comparison of distances between check points not used in bundle adjustment and measured on generated orthoimages and distances computed from coordinates measured by GPS. The paper concerns the above problems and it is ended by summary and proposals coming from the research.
Źródło:
Biuletyn Wojskowej Akademii Technicznej; 2011, 60, 3; 335-352
1234-5865
Pojawia się w:
Biuletyn Wojskowej Akademii Technicznej
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies