Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "exposure" wg kryterium: Temat


Tytuł:
Ftalan benzylu butylu
Benzyl butyl phthalate
Autorzy:
Pałaszewska-Tkacz, A.
Czerczak, S.
Powiązania:
https://bibliotekanauki.pl/articles/138573.pdf
Data publikacji:
2010
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
BBP
NDS
narażenie zawodowe
OEL
occupational exposure
Opis:
Ftalan benzylu butylu (BBP) jest przezroczystą, oleistą cieczą o słabym zapachu stosowaną przede wszystkim jako dodatek zmiękczający do polimerów. Stosuje się ją powszechnie do produkcji płytek, pianek i wykładzin PCV. Ponadto jest wykorzystywana do produkcji uszczelniaczy (na bazie polisiarczków, poliuretanów, akrylanów), klejów i spoiw (na bazie poliakrylanów i polioctanu winylu), farb (na bazie poliuretanów i poliakrylanów) oraz atramentów i lakierów (na bazie akrylanów, nitrocelulozy i żywic winylowych). Podczas narażenia zawodowego na ftalan benzylu butylu znaczenie ma droga inhalacyjna, a w mniejszym stopniu kontakt związku ze skórą. Ze względu na niską prężność par w temperaturze pokojowej podwyższone stężenia ftalanu benzylu butylu mogą wystąpić jedynie w procesach technologicznych przebiegających w podwyższonej temperaturze lub w procesach związanych z występowaniem aerozoli ftalanu benzylu butylu w powietrzu środowiska pracy. Ftalan benzylu butylu jest związkiem o potwierdzonym szkodliwym działaniu na rozrodczość, natomiast w badaniach dotyczących jego toksyczności układowej najczęściej obserwowanymi skutkami narażenia u zwierząt był wzrost względnej i bezwzględnej masy wątroby i nerek. Skutek ten uznano za skutek krytyczny działania ftalanu benzylu butylu i zaproponowano przyjęcie stężenia 5 mg/m3 związku za jego wartość najwyższego dopuszczalnego stężenia (NDS). Zaproponowana wartość zabezpieczy pracowników również przed skutkami szkodliwego działania ftalanu benzylu butylu na rozrodczość. Z uwagi na to, że ftalan benzylu butylu nie wykazuje działania drażniącego, nie ma potrzeby ustalania wartości najwyższego dopuszczalnego stężenia chwilowego (NDSCh) dla tego związku. Zaleca się oznakowanie substancji w wykazie literą „Ft” – substancja działająca toksycznie na płód.
Benzyl butyl phthalate (BBP) is a clear, oily liquid with a slight odour. It is used mostly as a plasticizer for polyvinyl chloride in vinyl floor tiles, vinyl foam and carpet backing. Furthermore, it is used in the production of sealants (polysulfide-, polyurethane-, or acrylic-based), adhesives (polyacrylic- and polyvinylacetate-based), paints (polyurethane- and polyacrylic-based), lacquers and inks (acrylic-, nitrocellulose- and vinyl resin-based). As far as occupational exposure is concerned, the inhalation route of exposure is important, and to a lesser extent dermal contact. Because of low vapour pressure at room temperature, the high concentration of BBP can only occur during technological processes where the temperature is elevated or BBP aerosols are generated. The reprotoxic activity of benzyl butyl phthalate has been confirmed, while in systemic toxicity studies increases in relative liver and kidney weights have been the most often observed effects. This effect was considered critical when the Polish OEL value of BBP was developed. It was agreed that the proposed value of 5 mg/m3 protected workers from the reproductive toxicity of BBP, too. It is also recommended to label BBP, in the Polish inventory of OELs, with the letters "Ft", a substance toxic to the foetus.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2010, 3 (65); 27-60
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Heksafluoropropen : dokumentacja proponowanych dopuszczalnych wielkości narażenia zawodowego
Hexafluoropropene : documentation of proposed values of occupational exposure limits (OELs)
Autorzy:
Świdwińska-Gajewska, A
Czerczak, S.
Powiązania:
https://bibliotekanauki.pl/articles/138517.pdf
Data publikacji:
2017
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
heksafluoropropen
toksyczność
narażenie zawodowe
NDS
hexafluoropropene
toxicity
occupational exposure
Opis:
Heksafluoropropen (HFP) jest bezbarwnym gazem stosowanym głównie jako monomer do produkcji fluorowych polimerów termoplastycznych, a także środka gaśniczego – heptafluoropropanu. Został zaklasyfikowany pod względem zagrożeń dla zdrowia jako substancja: działająca szkodliwe w następstwie wdychania, powodująca podrażnienie dróg oddechowych, mogąca spowodować uszkodzenie nerek w następstwie jednorazowego narażenia inhalacyjnego, a także przez długotrwałe lub powtarzane narażenie inhalacyjne. Heksafluoropropen nie ma w Polsce ustalonych normatywów higienicznych w środowisku pracy. Powodem, dla którego opracowano dokumentację i zaproponowano wartość najwyższego dopuszczalnego stężenia (NDS), jest informacja o produkcji heksafluoropropenu w Polsce. Substancja ta została zgłoszona (jako półprodukt) do Europejskiej Agencji ds. Chemikaliów przez rejestrującego (w rozumieniu rozporządzenia REACH) z siedzibą w Tarnowie. Nie ma wyników badań dotyczących działania toksycznego heksafluoropropenu na ludzi. U zwierząt narażanych inhalacyjnie na heksafluoropropen obserwowano przede wszystkim zmiany w nerkach: zwyrodnienie i martwicę nabłonka kanalików krętych. Przy większym stężeniu heksafluoropropenu u zwierząt obserwowano: obrzęk płuc, a także zaburzenie koordynacji i skurcze kloniczne, a ponadto zmiany względnej masy i aktywności kory nadnerczy, zmniejszenie względnej masy śledziony oraz zmiany w wątrobie. Na podstawie wyników badań biochemicznych wykazano zwiększenie ilości jonów fluorkowych i aktywności dehydrogenazy mleczanowej w moczu, a także zwiększenie stężenia kreatyniny oraz azotu mocznikowego w surowicy narażanych zwierząt. Zmiany parametrów krwi obejmowały także zmiany liczby: limfocytów, neutrofilów oraz eozynofilów. W badaniach dotyczących odległych skutków działania toksycznego, heksafluoropropen nie działał mutagennie w układach bakteryjnych ani na komórki ssaków. W testach w warunkach in vitro związek wywoływał aberracje chromosomowe w komórkach jajnika chomika chińskiego. W badaniach przeprowadzonych w warunkach in vivo na myszach zaobserwowano powstawanie mikrojąder w szpiku kostnym. Wynik ujemny uzyskano w teście na nieplanową syntezę DNA w hepatocytach szczurów oraz w teście dominujących mutacji letalnych u szczurów. Nie zaobserwowano wpływu heksafluoropropenu na rozrodczość. W dostępnym piśmiennictwie nie ma danych dotyczących działania rakotwórczego związku. Mechanizm działania toksycznego heksafluoropropenu jest związany z metabolizmem na drodze S-koniugacji z glutationem, a w szczególności z hydrolizą koniugatu. Przy udziale enzymu b-liazy dochodzi do rozkładu koniugatu i powstawania aktywnych tioli. Nefrotoksyczne działanie heksafluoropropenu jest związane z dużą aktywnością enzymów (b-liazy i N-deacetylazy), które przyczyniają się do powstawania aktywnych tioli w kanalikach nerkowych. Za podstawę do oszacowania wartości najwyższego dopuszczalnego stężenia (NDS) heksafluoropropenu w środowisku pracy przyjęto wyniki badania, w którym myszy i szczury narażano inhalacyjnie na związek przez trzy miesiące. Narządem krytycznym toksycznego działania heksafluoropropenu u gryzoni były nerki. Na podstawie wartość NOAEC wynoszącej 62 mg/m3 zaproponowano przyjęcie w Polsce wartości NDS dla heksafluoropropenu na poziomie 8 mg/m3. Nie ma podstaw do ustalenia wartości najwyższego dopuszczalnego stężenia chwilowego (NDSCh) oraz wartości dopuszczalnej w materiale biologicznym (DSB).
Hexafluoropropene (HFP) is a colorless gas. It is used mainly as a monomer for the production of thermoplastic fluoropolymers and as an extinguishing agent - heptafluoropropane. It has been classified for health hazards as a substance that is harmful if inhaled, may cause respiratory irritation and renal damage after a single exposure and through prolonged or repeated inhalation exposure. Hexafluoropropene does not have Maximum Admissible Concentration (MAC) value in Poland. The reason for developing the documentation of proposal for MAC value was the production of hexafluoropropene in Poland. This substance was registered as an intermediate product in the European Chemicals Agency by the registrant (within the meaning of the REACH Regulation) sited in Tarnów. There is lack of information on the toxic effects of occupational exposure to hexafluoropropene in humans. Degeneration and epithelial necrosis of the tubular lobules were observed in kidneys of laboratory animal after inhalation of hexafluoropropane. In the rodents exposed at higher concentrations of hexafluoropropene, pulmonary edema, coordination disorders and clonic contractions occurred. Exposure to hexafluoropropene induced changes in relative weight and activity of adrenal cortex, decrease in relative weight of spleen and changes in liver. Biochemical studies showed an increase of the level of fluoride ions and urinary lactate dehydrogenase activity and elevated serum creatinine and urea nitrogen in the exposed animals. Changes in blood parameters (count of lymphocytes, neutrophils and eosinophils) were also observed in rodents. In studies with the long-term effects of toxicity, hexafluoropropene was not mutagenic in bacterial systems or mammalian cells. In the in vitro tests, the compound induced chromosome aberrations in Chinese hamster ovary cells. In in vivo studies in mice, the formation of micronuclei in bone marrow was observed. The negative result was obtained in the assay for unplanned DNA synthesis test in rat hepatocytes and in the dominant rat mutation assay. No effect of hexafluoropropene on fertility was observed. There is no data on carcinogenicity. The mechanism of hexafluoropropene toxicity is related to metabolism: path-way of S-conjugation with glutathione, in particular hydrolysis of the conjugate. During decomposition of the conjugate by the enzyme -lyase, active thiols appeared. Nephrotoxic activity of hexafluoropropene is associated with high levels of enzymes (β-lyases and N-deacetylases), which contribute to the formation of active thiols in renal tubules. The results of 3-month inhalation study on mice and rats were the basis for calculation of the MAC value of the hexafluoropropene. The critical organs of hexafluoropropene toxicity to rodents are kidneys. Based on the NOAEC value of 62 mg/m3 , the MAC value for hexafluoropropene at 8 mg/m3 was proposed. Neither short-term value (STEL) nor biological tolerance limit was established.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2017, 4 (94); 35-53
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Trichloroeten
Trichloroethylene
Autorzy:
Jankowska, A.
Bystry, K.
Czerczak, S.
Powiązania:
https://bibliotekanauki.pl/articles/138203.pdf
Data publikacji:
2013
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
trichloroetan
TRI
NDS
narażenie zawodowe
trichloroethylene
MAC
occupational exposure
Opis:
Trichloroeten (Tri) jest lotną, przezroczystą, bez barwną cieczą o słodkim eterycznym zapachu, zbliżonym do zapachu chloroformu. Substancja jest stosowana do odtłuszczania metali oraz jako rozpuszczalnik, Pary trichloroetenu drażnią błony śluzowe nosa i gardła, powodują także podrażnienia skóry i oczu. U ludzi trichloroeten w warunkach narażenia inhalacyjnego działa hamująco na czynności ośrodkowego układu nerwowego i wywołuje: bóle i zawroty głowy, senność, nudności i utratę przytomności. Narażenie na trichloroeten o dużych stężeniach powodowało zgon. Trichloroeten wykazuje również działanie nefrotoksyczne oraz hepatotoksyczne. Według danych Centralnego Rejestru Danych o Narażeniu na Substancje, Preparaty, Czynniki i Procesy Technologiczne o Działaniu Rakotwórczym lub Mutagennym, prowadzonego w Instytucie Medycyny Pracy w Łodzi, na działanie trichloroetenu w 2011 r. było narażonych 1239 pracowników, którzy byli zatrudnieni: przy ekstrakcji tłuszczów z nasion, czyszczeniu i odtłuszczaniu metali, w przemyśle gumowym, farb i atramentów drukarskich oraz lakierów. W 2010 r., zgodnie z danymi Głównego Inspektoratu Sanitarnego, 5 osób było narażonych na trichloroeten o stężeniach większych od obowiązującej wartości NDS, czyli 50 mg/m w tym 2 oso by były zatrudnione przy produkcji wyrobów metalowych, a 3 osoby - przy innej produkcji nie- sklasyfikowanej. U zwierząt doświadczalnych głównymi skutkami narażenia inhalacyjnego na trichloroeten było: upośledzenie funkcji OUN, skutki nefrotoksyczne, hepatotoksyczne oraz wakuolizacja komórek Clara płuc u myszy. W komórkach ssaków w warunkach in vitro czysty trichloroeten wywoływał: transformację komórek, wymianę chromatyd siostrzanych, mutację genów, lecz nie powodował aberracji chromosomów. W dostępnym piśmiennictwie istnieją ograniczone dowody działania rakotwórczego trichloroetenu na ludzi. Wyniki kilku badań kohortowych ludzi narażonych zawodowo na trichloroeten wykazały zwiększone ryzyko zachorowania na: nowotwory wątroby, przewodów żółciowych i nerek, a także na chłoniaka nieziarniczego. Narażenie myszy na trichloroeten drogą pokarmową prowadziło do wzrostu częstości nowotworów wątroby. Związek indukował u myszy i szczurów także nowotwory o innej lokalizacji. Eksperci IARC zaliczyli trichloroeten do gru 2A - grupy substancji prawdopodobnie kancerogennych dla ludzi. Wyniki badań dotyczących wpływu trichloroetenu na rozrodczość ludzi nie dostarczyły jednoznacznych dowodów działania toksycznego związku. dostępnym piśmiennictwie i bazach danych nie znaleziono informacji o wynikach badań epidemiologicznych dotyczących narażenia zawodowe go na trichloroeten, w których ryzyko skutku teratogennego zależałoby znacząco od narażenia na tę substancję. Trichloroeten jest dobrze wchłaniany wszystkimi drogami narażenia: w postaci par wchłania się układzie oddechowym, a ciekły w przewodzie pokarmowym oraz przez skórę. Metabolizm trichloroetenu w organizmie przebiega z udziałem cytochromu P-450 i glutationu Główne metabolity trichloroetenu - trichloroetan i kwas trichlorooctowy, są wydalane z moczem częściowo w postaci glukuronidów. Te dwa metabolity są stosowane jako biochemiczne wskaźniki narażenia. Część wchłoniętego trichloroetenu je wydalana z powietrzem wydychanym w postaci niezmienionej. Wydalanie trichloroetenu z powietrzem oraz wydalanie metabolitów przebieg wielofazowo. Wartość najwyższego dopuszczalnego stężeni (NDS) trichtoroetenu ustalono na podstawie działania jego neurotoksycznego oraz nefrotoksycze go. Proponuje się utrzymanie obowiązującej wartości NDS trichloroetenu, czyli 50 mg/m3 Z uwagi na działanie drażniące substancji oraz działanie par trichloroetenu na OUN, proponuje się przyjęcie wartości najwyższego dopuszczalnego stężeni chwilowego (NDSCh) na poziomie 100 mg/m3 (2 razy wartość NDS). Proponuje się także utrzymanie dotychczas zalecanej wartości dopuszczalnego stężenia w materiale biologicznym (DSB) n poziomie 20 mg TCA/1 moczu. Zaleca się również oznakowanie związku literam „l”- substancja o działaniu drażniącym, „Sk” substancja wchłania się przez skórę oraz „Rakotw.kat. 2.” — substancja rakotwórcza kategorii 2.
Trichloroethylene (Tri) is a volatile, colorless Iiquid with a sweetish odor resembling chloro form. Tri is mainly used in metal degreasing and as a solvent. Tri vapor is irritating to the eyes, nose, throat (mucous membranes) and skin. Human exposure to Tri results in CNS depression. Headache, dizziness, drowsiness, nausea, unconsciousness and death after exposure to very high concentrations have been observed. High doses of Tri produce hepatotoxicity and nephrotoxicity. After inhalation of Tri by laboratory animais, some adverse effects have been observed in CNS, liver, kidneys and Clara cells in mouse. In vitro studies in mammalian cells suggest that Tri can cause ceil transformation, sister chromatid exchange, gene mutations but does not produce chromosomal aberrations. There is limited evidence in humans for the carcinogenicity of Tri. The results of cohort studies indicate excessive risk of liver, biliary duct and kidney cancer and excessive risk of non Hodgkin’s lymphoma. Tri has produced liver tumours in mice after per os exposure as well as tumors at other sites in mice and rats. According to IARC, Tri is probably carcinogenic to humans (group 2A). The results of available studies show no consistent effects of Tri on the human reproductive system. To determine MAC value for Tri neurotoxicity and nephrotoxicity were adopted as a critical effect. The Expert Group for Chemicals Agents suggest maintaining the current MAC value of 50 mg/m Due to the irritating potential of Tri vapors to CNS, a 5TEL value of 100 mg/m (2 X MAC) has been proposed. It has been also proposed to label the substance with „1” (irritant), Sk (substance can penetrate skin) and „Rakotw. kat. 2” (carcinogen category 2). The current BEI value of 20 mg TCA/I urine is maintained.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2013, 4 (78); 83-118
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Formamid
Formamide
Autorzy:
Jankowska, A.
Czerczak, S.
Powiązania:
https://bibliotekanauki.pl/articles/138480.pdf
Data publikacji:
2010
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
formamid
narażenie zawodowe
NDS
formamide
occupational exposure
MAC value
Opis:
Formamid jest bezbarwną, bezwonną cieczą o małej lepkości, stosowaną jako rozpuszczalnik przemysłowy, która znalazła zastosowanie w produkcji: barwników, farmaceutyków, pestycydów oraz przy wytwarzaniu włókien akrylowych w pisakach i w markerach. Formamid jest ponadto stosowany także jako dodatek do smarów olejowych, cieczy hydraulicznych oraz środków przeciwoblodzeniowych używanych na lotniskach, a także jako środek do zmiękczania papieru, klejów zwierzęcych oraz rozpuszczalnych w wodzie. Formamid jest też stosowany w badaniach genetycznych oraz jako krioprotektant. Głównymi drogami narażenia na formamid w warunkach pracy zawodowej są układ oddechowy i skóra. W badaniach prowadzonych na zwierzętach doświadczalnych związek ten wykazywał słabe działanie drażniące na skórę oraz oczy i nie wykazywał działania uczulającego. Dwutygodniowe narażenie szczurów drogą inhalacyjną na formamid o stężeniu 920 mg/m3 spowodowało zmniejszenie liczby płytek krwi oraz limfocytów we krwi. Związek o stężeniu 2760 mg/m3 spowodował dodatkowo spadek przyrostu masy ciała, jak również mikroskopowe zmiany w nerkach (nekrozy nabłonka kanalików nerkowych). Na podstawie wyników trzymiesięcznych badań na szczurach wykazano, że formamid może być wchłaniany przez skórę w ilości wystarczającej do pojawienia się objawów toksyczności ogólnej. Formamid podawany na skórę w dawce 300 lub 1000 mg/kg pod opatrunek powodował policytemię, natomiast po dawce 3000 mg/kg obserwowano u zwierząt osłabienie oraz zmianę masy narządów wewnętrznych. W badaniach dotyczących toksyczności reprodukcyjnej formamidu po narażeniu przewlekłym myszy zaobserwowano spadek płodności i wielkości miotu w pokoleniach F0 i F1. Pokolenie F1 wykazywało dodatkowo spadek masy ciała, wydłużenie okresu ciąży, zmniejszenie względnej masy jajników oraz tendencję do wydłużania czasu spoczynkowego między rujami. Toksyczność reprodukcyjna była obserwowana po narażeniu na związek o stężeniu wynoszącym 750 ppm w obydwóch generacjach (195 mg/kg/dzień dla pokolenia F0 oraz 190 mg/kg/dzień dla pokolenia F1). W badaniu tym formamid był podawany z wodą do picia. Na podstawie wyników badań doświadczalnych na zwierzętach stwierdzono, że formamid ma właściwości embriotoksyczne oraz teratogenne po podaniu go drogą dermalną, pokarmową oraz dootrzewnowo. W badaniach tych zaobserwowano resorpcję lub śmierć zarodków, jak również wady rozwojowe i spadek masy ciała płodów. Wartość NOAEL dla toksyczności rozwojowej w badaniach na szczurach ustalono na poziomie 50 mg/kg/dzień, a wartość LOAEL na poziomie 100 mg/kg/dzień (na podstawie spadku masy ciała). W badaniach na królikach po dawce formamidu 140 mg/kg/dzień obserwowano zmniejszenie średniej liczby żywych płodów w miocie oraz masy płodów na miot. Wartość NOAEL dla toksyczności rozwojowej ustalono na poziomie 70 mg/kg/dzień. W Polsce nie ustalono dotychczas wartości najwyższego dopuszczalnego stężenia (NDS) formamidu. W USA (ACGIH), Belgii, Norwegii oraz w Szwajcarii ustalono wartość normatywu higienicznego na poziomie 18 mg/m3. Oznakowanie „skin” dla tego związku przyjęto w: USA (ACGIH, NIOSH), Niemczech, Finlandii oraz w Belgii. Za podstawę do wyliczenia wartości NDS formamidu przyjęto 14-dniowy eksperyment na szczurach narażanych drogą oddechową. Za skutek krytyczny przyjęto zmniejszoną liczbę płytek krwi i limfocytów we krwi oraz uszkodzenie nerek. Za wartość NOAEL formamidu przyjęto stężenie 184 mg/m3. Zaproponowano wartość NDS formamidu na poziomie 23 mg/m3. Jednocześnie zaproponowano oznakowanie formamidu w wykazie NDS literami „Sk (substancja wchłaniana przez skórę) na podstawie kryteriów zaproponowanych przez Fiserovą-Bergerową i in. (1990), jak również wyników badania 3-miesięcznego oraz 2-tygodniowego na szczurach. Ze względu na fakt, że formamid rozpatruje się jako działający szkodliwie na funkcje rozrodcze człowieka (może działać szkodliwie na dziecko w łonie matki) zaleca się oznakowanie substancji w wykazie literami „Ft” – substancja działająca toksycznie na płód.
Formamide is a colourless and odourless liquid. This substance is widely used as a solvent in the industry as well as an additive for drilling muds, aircraft deicing fluids and hydraulic fluids. Respiratory tract and skin are the major routes of occupational exposure to formamide. Slight skin and eye irritation was reported in animal studies. Formamide did not produce allergic skin sensitisation. A study in rats treated for 3 months with formamide under semi-occlusive patches to the skin produced systemic toxicity. Rats exposed for 14 days at 920 mg/m3 of formamide vapor had suppressed platelet and lymphocyte counts. In animals exposed at 2760 mg/m3 a decreased rate of body weight gain and microscopic lesions in the kidney (necrosis of tubular epithelium) were observed. Effects on reproduction were seen at 750 ppm of formamide in drinking water in a two-generation study in mice. Formamide showed embryotoxicity and developmental toxicity in animals following dermal, per os and intraperitonealy exposure. In setting the exposure limit, the results of a 14-day inhalation study in rats were considered. Based on the NOAEL value of 184 mg/m3 and appropriate uncertainty factors, a MAC value was calculated at 23 mg/m3. Considering evidence on skin absorption an additional determination with Sk letters was proposed. With regard to the fetotoxic effects of formamide in laboratory animals an Ft notation was considered.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2010, 2 (64); 131-151
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Cisplatyna : dokumentacja proponowanych dopuszczalnych wielkości narażenia zawodowego
Cisplatin : documentation of proposed values of occupational exposure limits (OELs)
Autorzy:
Pałaszewska-Tkacz, A.
Świdwińska-Gajewska, A
Czerczak, S.
Powiązania:
https://bibliotekanauki.pl/articles/137504.pdf
Data publikacji:
2018
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
cisplatyna
toksyczność
narażenie zawodowe
NDS
cisplatin
toxicity
occupational exposure
MAC
Opis:
Cisplatyna jest cytostatykiem stosowanym w terapii raka: jądra, jajnika, pęcherza moczowego, kolczystokomórkowego głowy i szyi, drobnokomórkowego i niedrobnokomórkowego płuca oraz szyjki macicy. Dla personelu medycznego jest dostępna w postaci ampułek 10 lub 50 mg z koncentratem do sporządzania roztworu do infuzji (1 mg cisplatyny/ml). Narażenie zawodowe na cisplatynę może wystąpić podczas produkcji oraz w czasie stosowania leku na oddziałach szpitalnych. Narażenie przy produkcji stanowi mniejszy problem, ponieważ dotyczy stosunkowo wąskiej grupy pracowników firm farmaceutycznych, podlegających wymogom dobrej praktyki wytwarzania i restrykcyjnej kontroli narażenia. Znacznie większą grupę osób zawodowo narażonych na cisplatynę stanowią pracownicy służby zdrowia (pielęgniarki, lekarze, farmaceuci, salowe, osoby sprzątające, pracownicy pralni) opiekujący się i mający kontakt z leczonym pacjentem. Źródłem narażenia dla personelu medycznego i pomocniczego może być przygotowywany i podawany lek oraz wydaliny i wydzieliny chorych. Głównymi drogami narażenia zawodowego w trakcie procesów produkcji cisplatyny są układ oddechowy i skóra. W warunkach szpitalnych to skóra stanowi główną drogę narażenia, chociaż nie można wykluczyć również narażenia inhalacyjnego, głównie na aerozole cisplatyny. Największe stężenia cisplatyny w powietrzu środowiska pracy wynosiły < 5,3 ng/m3, natomiast na różnych powierzchniach pomieszczeń aptecznych i szpitalnych, sprzęcie zabiegowym i rękawicach, stężenia nie przekraczały 110 ng/cm2. Brak jest danych ilościowych dotyczących wchłaniania cisplatyny przez skórę lub przez drogi oddechowe u ludzi, wiadomo natomiast, że związek może wchłaniać się tymi drogami, o czym świadczą wyniki badań prowadzonych wśród farmaceutów i personelu medycznego, u których stwierdzano istotnie większe stężenia platyny (Pt) w moczu w porównaniu z grupą kontrolną. Informacje dotyczące skutków zdrowotnych narażenia zawodowego na cisplatynę są bardzo nieliczne. Opisano jedynie przypadki alergii zawodowej objawiającej się pokrzywką. Dane dostępne w piśmiennictwie dotyczą głównie działań niepożądanych u pacjentów leczonych cisplatyną. Najczęściej zgłaszane działania niepożądane cisplatyny to zaburzenia: czynności nerek, hematologiczne, słuchu, żołądkowo-jelitowe oraz neuropatie. U około 1/3 pacjentów już po podaniu pojedynczej dawki cisplatyny (50 mg/m2) obserwowano skutki działania toksycznego związku na: nerki, szpik kostny i słuch. Skutki działania nefrotoksycznego, ototoksycznego i neurotoksycznego cisplatyny mogą mieć charakter długotrwały i nieprzemijający. W badaniach toksyczności cisplatyny na zwierzętach związek podawano wyłącznie dootrzewnowo lub dożylnie. Cisplatyna działała głównie na nerki zwierząt, wywołując zmiany biochemiczne (m.in. zwiększenie stężenia kreatyniny i azotu mocznikowego w surowicy), a w obrazie histopatologicznym martwicę w proksymalnych kanalikach nerkowych. Ponadto obserwowano zmiany aktywności enzymów wątrobowych, liczne ogniska zapalne oraz martwice wątroby, a także nieprawidłowości w rozmieszczeniu komórek wydzielniczych i aktywności enzymów bariery jelitowej oraz zmiany histopatologiczne w jelicie cienkim, które zaburzały procesy trawienne i prowadziły do zaburzenia łaknienia u zwierząt. Cisplatyna działała również ototoksycznie, prowadząc do utraty słuchu u gryzoni. Obserwowano ponadto zmiany w obrazie krwi i zaburzenia w obrębie układu krwiotwórczego. U narażanych zwierząt wystąpiły: leukopenia, zmniejszona liczba neutrofili, limfocytów oraz płytek, a także zahamowanie czynności szpiku kostnego. W testach neurobehawioralnych u zwierząt cisplatyna wywoływała zmniejszenie aktywności ruchowej. Cisplatyna działała mutagennie w testach na bakteriach oraz na komórkach ssaków, w tym na ludzkich limfocytach. Wywoływała wzrost częstości wymian chromatyd siostrzanych i aberracje chromosomowe. Odnotowano dodatnie wyniki testu kometowego oraz mikrojądrowego. Jednym z opisywanych działań ubocznych terapii cisplatyną jest jej działanie rakotwórcze. W literaturze opisano przypadki ostrej białaczki nielimfoblastycznej u pacjentek leczonych wyłącznie cisplatyną i karboplatyną 6 lat po zakończeniu chemioterapii. W dostępnym piśmiennictwie brak jest danych dotyczących przypadków zachorowania na nowotwory pracowników zawodowo narażonych wyłącznie na cisplatynę. Istniejące doniesienia dotyczą jednoczesnego narażenia na różne cytostatyki. U myszy i szczurów po podaniu dootrzewnowym cisplatyny wykazano jej działanie rakotwórcze. U myszy narażanych na cisplatynę obserwowano zwiększoną liczbę i częstość występowania gruczolaków płuc. Po narażeniu zwierząt na cisplatynę dootrzewnowo, a ponadto na olej krotonowy naskórnie, odnotowano brodawczaki skóry. U narażanych szczurów cisplatyna indukowała białaczki. W IARC zaklasyfikowano cisplatynę jako substancję prawdopodobnie rakotwórczą dla ludzi (grupa 2.A). W DECOS uznano ją za kancerogen genotoksyczny, również NTP klasyfikuje ją jako substancję potencjalnie rakotwórczą dla ludzi. Pomimo że cisplatyna nie została urzędowo zaklasyfikowana w UE i brak jej klasyfikacji zharmonizowanej, większość producentów klasyfikuje ten związek jako działający rakotwórczo kategorii zagrożenia 1.B. Nie ma w dostępnym piśmiennictwie danych o przypadkach klinicznych i wynikach badań epidemiologicznych dotyczących wpływu cisplatyny na płód i rozrodczość wskutek narażenia zawodowego na ten związek. Na podstawie opisanych przypadków ciężarnych leczonych cisplatyną wiadomo, że związek ten przenika przez łożysko oraz do mleka matki. U dzieci 20% pacjentek leczonych cisplatyną w pierwszym trymestrze ciąży oraz u 1% dzieci pacjentek leczonych w drugim i/lub trzecim trymestrze ciąży wystąpiły poważne wady rozwojowe. U mężczyzn przewlekłe podawanie cisplatyny wywoływało odwracalną azoospermię oraz dysfunkcję komórek Leydig’a. Spośród 61 kobiet chorych na raka jajnika poddanych zachowawczemu zabiegowi chirurgicznemu i chemioterapii cisplatyną w wieku rozrodczym 47% urodziło dzieci w okresie po terapii, a 87% starających się zaszło w ciążę. W badaniach na zwierzętach laboratoryjnych cisplatyna działała wysoce embriotoksycznie. Rzadziej obserwowano zmiany teratogenne. Cisplatyna wpływała także na aktywność jajników. Na podstawie dostępnych w piśmiennictwie danych dotyczących toksyczności cisplatyny u ludzi i zwierząt nie jest możliwe ustalenie zależności dawka-odpowiedź. Z analizy klasyfikacji leków stosowanych przez: ASHP, NIOSH, IACP, IPCS wynika, że wartość najwyższego dopuszczalnego stężenia (NDS) cisplatyny w środowisku pracy powinna mieścić się w granicach 0,001 ÷ 0,01 mg/m3. Biorąc pod uwagę ilościową ocenę rakotwórczości cisplatyny wykonaną przez ekspertów DECOS oraz akceptowalny poziom ryzyka zawodowego ustalony przez Międzyresortową Komisję ds. NDS i NDN (10-3 ÷ 10-4) dla kancerogenów, dopuszczalne stężenia cisplatyny w środowisku pracy powinny mieścić się w zakresie 0,005 ÷ 0,0005 mg/m3. W większości państw (w: USA, Belgii, Szwajcarii i na Węgrzech) ustalono wartości dopuszczalnych stężeń dla tego związku na poziomie 0,002 mg/m3. Zaproponowano wartość NDS cisplatyny na poziomie 0,002 mg/m3, a ponadto oznakowanie: Carc. 1B – substancja rakotwórcza kategorii zagrożenia 1.B; „Ft” – substancja działająca szkodliwie na płód oraz „skóra” – wchłanianie substancji przez skórę może być tak samo istotne, jak przy narażeniu drogą oddechową. Brak jest podstaw merytorycznych do ustalenia wartości najwyższego dopuszczalnego stężenia chwilowego (NDSCh) oraz wartości dopuszczalnej w materiale biologicznym (DSB) dla cisplatyny.
Cisplatin is a cytostatic used in the treatment of testicular, ovarian, cervix and bladder cancers, squamous cell carcinoma of a head and a neck, small cell and non-small cell lung cancer. For medical staff, it is available in ampoules of 10 or 50 mg with a concentrate for solution for infusion (1 mg cisplatin/ml). Occupational exposure to cisplatin may occur during production and drug use in hospital wards. Exposure during production is a minor problem because it concerns a relatively narrow group of employees of pharmaceutical companies, that are subjected to requirements of good manufacturing practice and restrictive exposure control. A much larger group of workers exposed to cisplatin are health professionals (nurses, doctors, pharmacists, cleaning service, laundry workers) who care for and have contact with treated patients. The source of exposure for medical and auxiliary personnel may be preparation and administration of drug and excretions and secretions of patients. The main routes of occupational exposure during cisplatin production processes are respiratory and skin. In hospitals, skin is the main route of exposure, although inhalation exposure cannot be excluded, mainly on cisplatin aerosols. The highest concentrations of cisplatin in the occupational environment air were < 5.3 ng/m3 , while on different surfaces of pharmacy and hospital rooms, surgical equipment and gloves, concentrations did not exceed 110 ng/cm2 . There are no quantitative data on the absorption of cisplatin through the skin or through the respiratory tract in humans, but it is known that the compound can absorb these routes, as demonstrated by studies conducted among pharmacists and medical personnel with significantly higher concentrations of platinum (Pt) in urine compared to the control group. There is little information on the health effects of occupational exposure to cisplatin. Only cases of occupational allergy manifesting by urticaria have been described. The data available in the literature refer mainly to adverse reactions in patients treated with cisplatin. The most commonly reported adverse effects of cisplatin are renal, haematological, hearing, gastrointestinal and neuropathic disorders. In about one third of patients, after the administration of a single dose of cisplatin (50 mg/m2 ), the toxic effects of the compound were observed on kidneys, bone marrow and hearing. The nephrotoxic, ototoxic and neurotoxic effects of cisplatin can be long-term and permanent. In animal toxicity studies with cisplatin, the compound was administered intraperitoneally or intravenously. Cisplatin affects mainly kidneys of animals, causing biochemical changes (including an increase creatinine and urea nitrogen levels in serum), and histopathological abnormalities, necrosis in the proximal renal tubules. Moreover, there were changes in liver enzymes activities, numerous inflammation and liver necrosis, and disorders in secretory cell distribution, intestinal barrier enzymes activities, and histopathological changes in the small intestine, which disturbed digestive processes and led to appetite disturbances in animals. Cisplatin is also ototoxic, leading to hearing loss in rodents. Changes in the blood parameters and disorders in the hematopoietic system have also been observed. Leukopenia, decreased number of neutrophils, lymphocytes and platelets, and bone marrow suppression occurred in exposed animals. In neurobehavioral tests in animals, cisplatin caused a decrease in physical activity. Cisplatin was mutagenic in tests on bacteria and on mammalian cells, including human lymphocytes. It evoked an increase in the frequency of sister chromatid exchanges and chromosomal aberrations. There were positive comet and micronucleus test results. One of the reported side effects of cisplatin therapy is its carcinogenic effect. The literature describes cases of acute non- -lymphoblastic leukemia in patients treated with cisplatin only and carboplatin 6 years after chemotherapy. In the available literature, there are no data on the incidence of cancer of workers professionally exposed only to cisplatin. The existing reports concern simultaneous exposure to various cytostatics. Cisplatin has been shown to be carcinogenic to mice and rats after intraperitoneal administration. In mice exposed to cisplatin an increased number and incidence of lung adenomas were observed. After exposure of animals to cisplatin intraperitoneally, and additionally to epidermal croton oil, skin papillomas were noticed. In the exposed rats, cisplatin induced leukemia. The cisplatin was classified by IARC experts as probably carcinogenic to humans (Group 2A). In DECOS, it was considered as genotoxic carcinogen, NTP also classifies it as a potentially carcinogenic substance for humans. Although cisplatin has not been officially classified in the EU and there is lack of its harmonized classification, most manufacturers classify this compound as a carcinogen 1B category. There is no data available in the literature on clinical cases and results of epidemiological studies on the effect of cisplatin on the fetus and reproduction due to occupational exposure to this compound. Based on the described cases of pregnant patients treated with cisplatin, this compound is known to cross the placenta and into breast milk. Serious malformations were observed in 20% of children of patients treated with cisplatin in the first trimester of pregnancy and 1% of children in patients treated in the second and/or third trimester of pregnancy. In men, chronic administration of cisplatin induced reversible azoospermia and Leydig cell dysfunction. Of the 61 women with ovarian cancer undergoing conservative surgery and cisplatin chemotherapy at reproductive age, 47% gave birth to children after treatment, and 87% of those trying to get pregnant, became pregnant. In laboratory animal studies, cisplatin was highly embryotoxic. Teratogenic changes were less frequently observed. Cisplatin also affected ovarian activity. Based on the cisplatin toxicity data available in humans and animals, it is not possible to determine the dose-response relationship. The analysis of the classification of drugs used by ASHP, NIOSH, IACP and IPCS shows that the cisplatin should have a permissible occupational exposure value within 0.001–0.01 mg/m3 . Considering the quantitative carcinogenicity assessment of cisplatin performed by DECOS experts and the acceptable level of occupational risk set by the Interdepartmental Commission on MAC (10-3–10-4 ) for carcinogens, acceptable concentrations of cisplatin in the work environment should be within 0.005 mg/m3–0.0005 mg/m3 . In most countries (in the USA, Belgium, Switzerland and Hungary), the occupational exposure limits for this compound were set at 0.002 mg/m3 . The maximum admissible concentration (MAC) value for cisplatin was proposed at 0.002 mg/m3 . It was proposed to label the substance as “Carc. 1B” – carcinogenic substance of category 1B, “Ft” – toxic to the fetus and “skin”, because absorption through the skin may be as important as inhalation. There are no substantive basis to establish the value of the short- -term (STEL) and permissible concentrations in biological material (DSB) for cisplatin.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2018, 1 (95); 13-52
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Trichlorek fosforylu
Phosphoryl trichloride
Autorzy:
Konieczko, K.
Czerczak, S.
Powiązania:
https://bibliotekanauki.pl/articles/138398.pdf
Data publikacji:
2013
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
trichlorek fosforylu
narażenie zawodowe
NDS
phosphoryl trichloride
occupational exposure
OEL
Opis:
Trichlorek fosforylu jest przezroczystą, bezbarwną lub żółtawą cieczą o nieprzyjemnym, ostry zapachu. W kontakcie z wodą lub z parą wodną gwałtownie hydrolizuje, wydzielając chlorowodór i kwas fosforowy(V). Jest stosowany w przemyśle, przede wszystkim do produkcji alkilowych i arylowych triestrów kwasu fosforowego( V). Znalazł zastosowanie także w produkcji: plastyfikatorów, środków opóźniających palenie, cieczy hydraulicznych, insektycydów, farmaceutyków, dodatków do produktów naftowych oraz półproduktów do produkcji barwników. Jest stosowany także jako: czynnik chlorujący, katalizator, rozpuszczalnik w krioskopii oraz domieszka donorowa w półprzewodnikach krzemowych. Trichlorek fosforylu jest we Wspólnocie Europejskiej uznany za produkt wysokotonażowy, tzw. HPV(> 1000 t/rok/producent lub importer). Związek jest produkowany m.in. przez takie koncerny chemiczne, jak: Bayer, BASF, Givaudan, Hoechst. W SCOEL rozpoczęto prace nad dokumentacją i propozycją wartości OEL dla trichlorku fosforylu. Trichlorek fosforylu jest zaklasyfikowany jako substancja żrąca, bardzo toksyczna (przez drogi oddechowe w warunkach narażenia ostrego), toksyczna (przez drogi oddechowe w warunkach narażenia przewlekłego) i szkodliwa (po połknięciu). Zarówno w przypadkach ostrych, jak i przewlekłych zatruć inhalacyjnych trichlorkiem fosforylu podstawowym skutkiem było działanie drażniące na drogi oddechowe i oczy: pieczenie oczu i gardła, uczucie duszności, łzawienie, kaszel, skurcz oskrzeli, ból za mostkiem, zapalenie opłucnej. U narażonych obserwowano pogorszenie parametrów spirometrycznych płuc, a późnymi skutkami narażenia były problemy astmatyczne i obturacyjna choroba układu oddechowego. Dostępne wyniki badań na zwierzętach są słabo udokumentowane. Trichlorek fosforylu nie wykazuje działania mutagennego. W piśmiennictwie nie znaleziono informacji ani o rakotwórczym działaniu tej substancji, ani o jej działaniu na rozrodczość. Skutkiem krytycznym działania trichlorku fosforylu jest silne działanie drażniące na błony śluzowe oczu i górnych dróg oddechowych. Należy podkreślić, że w kontakcie z wilgocią substancja hydrolizuje, tworząc silnie drażniące kwasy: chlorowodorowy i fosforowy(V). Istniejące dane nie pozwalają na wyznaczenie wartości NOAEL lub LOAEL, dlatego zaproponowano ustalenie wartości normatywu trichlorku fosforylu na podstawie obowiązujących normatywów higienicznych dla produktów jego hydrolizy oraz metody oznaczania ich stężeń w powietrzu na stanowiskach pracy. Ze względu na metodę oznaczania stężenia trichlorku fosforylu proponuje się przyjęcie stężenia 1 mg/m3 za wartość najwyższego dopuszczalnego stężenia (NDS) oraz stężenia 2 mg/m3 za wartość najwyższego dopuszczalnego stężenia chwilowego (NDSCh) przez analogię do kwasu fosforowego(V). Ze względu na działanie żrące trichlorku fosforylu na skórę i oczy proponuje się także oznaczenie normatywu literą „C” – substancja żrąca. Nie ma podstaw merytorycznych do ustalenia wartości dopuszczalnego stężenia w materiale biologicznym (DSB) tri chlorku fosforylu.
Phosphoryl trichloride is a clear, colourless to yellow, fuming liquid with a pungent and musty odor. It hydrolyses in water or moist air to hydrogen chloride and orthophosphoric acid. Phosphoryl trichloride is widely used to manufacture alkil and aryl orthophosphate triesters. It is used for plasticizers, flame retardants, hydraulic fluids, insecticides, pharmaceuticals, gasoline additives and dye intermediates. Phosphoryl trichloride is also used as a chlorinating agent, catalyst, cryoscopy solvent and dopant for semiconductor grade silicon. A critical effect of exposure to phosphoryl trichloride is a strong irritation of eyes and the upper respiratory tract. Based on available data no NOAEL nor LOAEL values could be calculated. With regard to rapid hydrolysis of phosphoryl trichloride to hydrochloric acid and orthophosphoric acid, establishing occupational exposure limits based on existing MAC (TWA) values for these hydrolysis products was proposed. Taking into account the method of determining phosphoryl trichloride in workplace air, relating to orthophosphoric acid, a MAC (TWA) value of 1 mg/m3 and a STEL value of 2 mg/m3 were proposed by analogy to orthophosphoric acid. C notation, indicating corrosive action of phosphoryl trichloride, was assigned. There are no grounds for establishing a BEI value.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2013, 1 (75); 57-68
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Ftalan dibutylu – frakcja wdychana
Autorzy:
Pałaszewska-Tkacz, A.
Czerczak, S.
Powiązania:
https://bibliotekanauki.pl/articles/138569.pdf
Data publikacji:
2012
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
ftalan dibutylu
narażenie zawodowe
NDS
dibutyl phthalates
occupational exposure
OEL
Opis:
Ftalan dibutylu (DBP) jest przezroczystą, oleistą cieczą o charakterystycznym dla estrów zapachu, którą stosuje się przede wszystkim jako dodatek zmiękczający do takich żywic i polimerów, jak: PCV (76% produkcji), uszczelniaczy, klejów i spoiw (14% produkcji) oraz tuszów drukarskich (7% produkcji). Pozostałe 3% produkcji ftalanu dibutylu stosuje się przy wytwarzaniu: farb nitrocelulozowych, włókien szklanych oraz kosmetyków. Ze względu na niską prężność par w temperaturze pokojowej podwyższone stężenia ftalanu di butylu mogą wystąpić jedynie w procesach technologicznych przebiegających w podwyższonej temperaturze mlub w procesach związanych z występowaniem aerozoli ftalanu dibutylu w powietrzu środowiska pracy. Na podstawie wyników pomiarów z lat 90. udostępnionych przez jeden z europejskich zakładów, wykazano, że w procesie produkcji ftalany dibutylu średnie stężenie na większości stanowisk pracy nie przekraczało 0,5 mg/m3, a w przypadku kilku stanowisk wynosiło 1,1 lub 5 mg/m3. W innym zakładzie średnie stężenie ftalanu dibutylu wynosiło 0,04 mg/m3 w 1992 r. oraz 0,7 mg/m3 w 1995 r. Pomiary stężeń wykonane w 1996 r. przy wytwarzaniu produktów zawierających ftalan di butylu wskazują, że stężenia tego związku wynosiły 0,19 - 0,75 mg/m3 (produkcja kabli), < 0,008 mg/m3 (produkcja polimerów) oraz < 0,03 (produkcja polimerów dla przemysłu dekarskiego). Według danych GIS, zarówno w 2007 r., jak i w 2010 r. nie było pracowników narażonych na stężenia ftalany dibutylu przekraczające obowiązujące normatywy (NDS – 5 mg/m3 i NDSCh – 10 mg/m3). W wykazie chorób zawodowych obejmującym lata 2001-2010, opracowanym na podstawie danych Centralnego Rejestru Chorób Zawodowych w Instytucie Medycyny Pracy, odnotowano tylko jeden przypadek choroby skóry u osoby narażonej na ftalan dibutylu w zakładzie przetwórstwa przemysłowego. Ftalan dibutylu wchłania się do organizmu przez układ oddechowy oraz pokarmowy, nie ulega kumulacji i jest wydalany głównie z moczem. Na podstawie mediany dawek lub stężeń śmiertelnych ftalanu dibutylu, które uzyskano na podstawie wyników badań doświadczalnych na gryzoniach, wykazano, że ftalan dibutylu jest substancją o stosunkowo małej toksyczności ostrej. W większości badań związek nie wykazywał działania drażniącego ani uczulającego ludzi i zwierząt doświadczalnych. Jak wynika z dostępnego piśmiennictwa, skutki działania toksycznego ftalanu dibutylu w warunkach narażenia podprzewlekłego i przewlekłego oceniano prawie wyłącznie na podstawie wyników badań na szczurach narażanych dożołądkowo. Wartości NOAEL dla działania toksycznego wyznaczano na poziomie 176 - 353 mg/kg m.c./dzień, a najczęściej obserwowanymi skutkami narażenia było: zmniejszenie masy ciała, zmiany parametrów krwi, zwiększenie masy wątroby i nerek. Jeśli chodzi o szkodliwe działanie ftalanu dibutylu, to jest to przede wszystkim związek o potwierdzonym szkodliwym działaniu na rozrodczość i dziecko w łonie matki. Zgodnie z rozporządzeniem Parlamentu Europejskiego i Rady (WE) nr 1272/2008 ftalan di butylu jest zaklasyfikowany jako substancja działająca szkodliwie na rozrodczość, kategoria zagrożeń 1B, z przypisanym zwrotem wskazującym rodzaj zagrożenia H360Df – może działać szkodliwie na dziecko w łonie matki; podejrzewa się, że działa szkodliwie na płodność. W dostępnych wynikach badań szkodliwego działania ftalanu dibutylu na rozrodczość, najmniejsze wyznaczone wartości NOAEL wynosiły: 50 mg/kg m.c./dzień dla zaburzeń płodności oraz 30 mg/kg m.c./dzień dla szkodliwego działania na płód. W Polsce, podobnie jak w większości państw Europy, wartości najwyższego dopuszczalnego stężenia (NDS) ftalanu dibutylu ustalono na poziomie 5 mg/m3. Stężenie to zabezpiecza przed uciążliwymi warunkami pracy związanymi z narażeniem na aerozole, którego należy oczekiwać w przypadku ftalanu dibutylu ze względu na jego małą prężność par. Biorąc pod uwagę dużą wartość NOAEL, oszacowano, że dotychczasowa wartość NDS ftalanu dibutylu powinna również zabezpieczać zarówno przed skutkami jego działania toksycznego, jak i jego szkodliwym wpływem na rozrodczość i płód. Zaproponowano więc pozostawienie wartości NDS ftalanu dibutylu na dotychczasowym poziomie wynoszącym 5 mg/m3. Jednocześnie proponuje się zrezygnowanie z dotychczas obowiązującej wartości najwyższego dopuszczalnego stężenia chwilowego (NDSCh – 10 mg/m3) ftalany dibutylu, dlatego że wyniki dostępnych badań nie wskazują na działanie drażniące związku. Obecnie brak jest podstaw do zaproponowania wartości dopuszczalnego stężenia ftalanu dibutylu w materiale biologicznym (DSB). Zaleca się oznakowanie substancji w wykazie literami „Ft” oznaczającymi substancję działającą toksycznie na płód.
Dibutyl phthalate (DBP) is a clear, oily liquid with ester-like odour. It is used mostly as a plasticizer for resins and polymers such as polyvinyl chloride (76% production), sealants and adhesives (14% production) and inks (7% production). The rest 3% of DBP production is used for nitrocellulose lacquers, safety glass and cosmetic products. As far as occupational exposure is concerned, the inhalation route of exposure is important and, to a lesser extent, dermal contact. Because of low vapour pressure at room temperature, the high concentration of DBP may only occur during technological processes where the temperature is elevated or DBP aerosols are generated. Measurements done by a European company in the 1990s showed that during DBP production the mean concentration of this substance in the workplace was below 0.5 mg/m3, and only in a few workplaces 1.1 or 5 mg/m3. In a different plant, the mean DBP concentration was 0.04 mg/m3 in 1992 and 0.7 mg/m3 in 1995. The measurements of DBP concentration carried out in 1996 at production processes of different products containing DBP showed that the concentration of this chemical was 0.19 – 0.75 mg/m3 (cables), < 0.008 mg/m3 (polymers) and < 0.03 (polymers for the tiling industry). In 2007 and 2010, according to data of Polandʼs Chief Sanitary Inspectorate, no workers were occupationally exposed to DBP in concentrations in excess of Polish OEL values. According to the Polish inventory of occupational diseases of the Nofer Institute of Occupational Medicine (Lodz, Poland), in 2001-2010 there was only one case of skin disorder in a worker occupationally exposed to DBP. DBP is absorbed in the respiratory and gastrointestinal tract, no significant accumulation has been recorded and it is excreted mainly in urine. LD50 values derived from experiments with rodents revealed that DBP was a substance of relatively low acute toxicity. In most studies, the substance caused no irritation or sensitisation in human or in laboratory animals. According to available data, subchronic and chronic toxicity of DBP was evaluated almost exclusively on the basis of studies on rats exposed orally. NOAEL values were equal to 176 – 353 mg/kg bw/d; the most often observed effects of exposure were decrease in body weight, changes in blood parameters and a relative increase in the weight of the liver and kidneys. DBP is a compound of a confirmed reprotoxic activity. According to Regulation (EC) No. 1272/2008 of the European Parliament and of the Council, DBP is classified as Reprotoxic, category 1B with hazard statement H360Df (may damage the unborn child, suspected of damaging fertility). In the available studies on DBP reprotoxocity, the lowest described NOAELs were 50 mg/kg bw/d for fertility and 30 mg/kg bw/d for foetus effects. In Poland, like in most European countries, the OEL value was set at the level equal to 5 mg/m3. This value is supposed to protect from burdensome working conditions connected with exposure to DBP aerosols expected due to its low vapour pressure. Taking into account the NOAEL values cited in the available literature, it was agreed that this level should also protect from toxic and reprotoxic DBP activity. It was agreed that the previous DBP OEL value of 5 mg/m3 should remain unchanged. Simultaneously, it was proposed that the previous STEL value of 10 mg/m3 should be removed from the Polish inventory of OELs as inaccurate due to no irritation activity of DBP confirmed in available studies. It is also recommended to label DBP, in the Polish inventory of OELs, with the letters ‘Ft’ – a substance toxic to the foetus.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2012, 3 (73); 37-70
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Akrylan hydroksypropolu – mieszanina izomerów. Dokumentacja proponowanych wartości dopuszczalnych wielkości narażenia zawodowego
Hydroxypropyl acrylate
Autorzy:
Kupczewska-Dobecka, M.
Czerczak, S.
Powiązania:
https://bibliotekanauki.pl/articles/138335.pdf
Data publikacji:
2005
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
akrylan hydroksypropylu
NDS
narażenie zawodowe
hydroxypropyl acrylate
OEL
occupational exposure
Opis:
Akrylan hydroksypropylu (HPA) jest mieszaniną dwóch izomerów: akrylanu 2-hydroksypropylu oraz akrylanu 2-hydroksy-1-metyloetylu. Wynika to z dwóch możliwości przyłączenia kwasu akrylowego do propano- -1,2-diolu (glikolu propylenowego). Większość danych dostępnych w piśmiennictwie dotyczy akrylanu 2-hydroksypropylu, jednak w bazach danych występuje znaczna liczba informacji dla mieszaniny izomerów. Niewielka liczba prac oryginalnych i ograniczone dane toksykologiczne spowodowały, że w dokumentacji przedstawiono informacje dotyczące zarówno akrylanu 2-hydroksypropylu, jak i mieszaniny izomerów tego akrylanu. Akrylan hydroksypropylu jest stosowany do produkcji żywic termoutwardzalnych, w syntezie organicznej jako substrat lub półprodukt, w mieszaninie z innymi pochodnymi akrylowymi w przemyśle skórzanym, tekstylnym, papierniczym oraz przy produkcji farb, lakierów i klejów jako czynnik wiążący, a także w produkcji hydrożelowych szkieł kontaktowych. Spolimeryzowany HPA wraz z dodatkiem uretanów stanowi wypełnienia stomatologiczne. Ostre narażenie na pary akrylanu hydroksypropylu może powodować wystąpienie skutków działania żrącego związku na błony śluzowe nosa, oczu, skóry i dróg oddechowych, które przejawiają się bólem gardła, kaszlem, uciskiem w klatce piersiowej, zaburzeniami oddychania oraz wystąpieniem oparzeń oczu i skóry. Kontakt z ciekłym akrylanem hydroksypropylu może powodować oparzenia. Naskórkowe testy okluzyjne, które zostały wykonane u ochotników uskarżających się na powtarzające się stany zapalne skóry, wykazały reakcję uczuleniową na akrylan hydroksypropylu. Głównym skutkiem przewlekłego narażenia zawodowego na akrylan hydroksypropylu jest miejscowe działanie drażniące jego par na górne drogi oddechowe, oczy oraz skórę, przejawiające się bólem głowy, kaszlem, dyskomfortem oraz przekrwieniem błon śluzowych oczu i skóry. U pracowników przetwórstwa tworzyw, w tym żywic akrylowych, narażonych na HPA i inne akrylany obserwowano liczne przypadki podrażnień skóry, zapalenia kontaktowego skóry (ACD) i uczulenia. W pracach nie podano stężeń HPA w powietrzu środowiska pracy. Na podstawie wartości medialnych dawek i stężeń śmiertelnych u zwierząt akrylan hydroksypropylu zaklasyfikowano jako toksyczny po podaniu wszystkimi trzema drogami. Nie znaleziono danych ilościowych pozwalających na ocenę zależności efektu toksycznego od wielkości narażenia u ludzi. W jednym badaniu oszacowano, że wartość NOAEL dla działania drażniącego akrylanu 2-hydroksypropylu u zwierząt wynosi 28 mg/m3 (5 ppm). Wartość tę uwzględniono do wyliczenia wartości najwyższego dopuszczalnego stężenia (NDS). Przyjęto łączny współczynnik niepewności związany z wrażliwością osobniczą człowieka, różnicami międzygatunkowymi i czasem eksperymentu równy 5 (dla substancji o działaniu drażniącym) oraz współczynnik modyfikacyjny związany z oceną eksperta o niekompletności danych równy 2. Zaproponowano przyjęcie wartości NDS akrylanu hydroksypropylu wynoszącej 2,8 mg/m3 i wartości dopuszczalnego stężenia chwilowego (NDSCh) wynoszącej 6 mg/m3, ze względu na działanie drażniące akrylanu 2- -hydroksypropylu. Proponuje się także oznakowanie substancji w wykazie NDS następującymi symbolami: „Sk” – substancja wchłania się przez skórę, „A” – substancja o działaniu uczulającym oraz „C” – substancja żrąca.
Hydroxypropyl acrylate (HPA) is a mixture of isomers: 2-hydroxypropyl acrylate and 2-hydroxy-1-methylethyl acrylate. HPA has been used in the manufacture of thermosetting resins for surface coatings. HPA is of moderate to low toxicity after oral intubation. The rat oral LD50 was 250 to 500 mg/kg with reports of values as high as 590 to 1300 mg/kg. Rats inhaling saturated HPA vapor generated at room temperature for 7 to 8 hours survived. Marked signs of eye, nasal, and respiratory irritation were noted during the exposure period. When dogs were repeatedly exposed by inhalation at 28 mg/m3 6 hours/day, 5 days/week for a total of 20 or 21 days during a 1-month period, signs of ocular, nasal, and respiratory tract irritation were observed. Rabbits and rats exposed to HPA under an identical protocol developed signs of nasal, respiratory, and ocular irritation. As for dogs, there was no adverse effect on body weight, hematological, clinical chemistry, or urinalysis parameters. A no-effect level for repeated inhalation exposure to HPA was calculated below 28 mg/m3. The material causes moderate burns (even when contacted as a 10% aqueous solution). These materials are of variable sensitization potential. Several publications have described contact allergy in exposed workers. Based on the signs of ocular, nasal and upper respiratory tract irritation documented in animals after repeated HPA inhalation, an 8-h TWA value of 2.8 mg/m3 is recommended. In order to minimize irritation symptoms, STEL of 6 mg/m3 is recommended. The notation of “C” – corrosive – and the skin notation are assigned (DL50s < 1000 mg/kg). HPA can be regarded as a skin sensitizer, hence, a sensitizer, “A”, notation is assigned.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2005, 3 (45); 5-18
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Bezwodnik octowy
Acetic anhydride
Autorzy:
Jankowska, A.
Czerczak, S.
Powiązania:
https://bibliotekanauki.pl/articles/138511.pdf
Data publikacji:
2013
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
bezwodnik octowy
NDS
narażenie zawodowe
acetic anhydride
MAC
occupational exposure
Opis:
Bezwodnik octowy jest bezbarwną, ruchliwą cieczą o ostrym zapachu octu stosowaną do produkcji: włókien acetylocelulozowych, plastików, octanu winylu, leków, rozpuszczalników, materiałów wybuchowych oraz perfum. Bezwodnik octowy został zaklasyfikowany jako substancja: łatwopalna, żrąca oraz szkodliwa (działa szkodliwie przez drogi oddechowe i po połknięciu).Wedlu g danych Głównego Urzędu Statystycznego w Polsce w 2010 r. liczba pracowników zatrudnionych w warunkach narażenia na bez wodnik octowy o stężeniach między 0,1 a 0,5 wartości NDS (10 mg/m wynosiła 71 osób, natomiast w 2011 r. - 84 osoby. Liczba pracowników zawodowo narażonych na bezwodnik octowy o stężeniu powyżej 0,5 wartości NDS wynosiła 3 osoby. Bezwodnik octowy jest silnym środkiem drażniącym: błony śluzowe, oczy oraz skórę. Szybko reaguje z wodą wskutek czego powstaje kwas octowy. Narażenie ostre pracowników na pary bezwodnika o stężeniu powyżej 21 mg/m po wodowało podrażnienie oczu oraz błon śluzowych górnych dróg oddechowych. Narażenie ludzi na pary bezwodnika o większym stężeniu może powodować: owrzodzenie błony śluzowej nosa i prawdopodobnie skurcz oskrzeli, piecze nie oczu, a następnie w ciągu paru godzin obrzęk rogówki i spojówki, jak również zmętnienie rogówki. Wartość ŁD dla szczurów narażonych inhalacyjnie na działanie związku ustalono na poziomie 1680 mg/m dla narażenia per os - 1780 mg/kg m.c., natomiast w innym badaniu 630 mg/kg m.c. Wartość LD dla narażenia przez skórę u królików wynosi 4000 mg/kg m.c. U królików związek ten powodował ciężkie oparzenia oczu. Bezwodnik octowy podany na skórę królików pod opatrunek na 24 h powodował powstawanie oparzeń i pęcherzy. Szczury narażano na pary bezwodnika o stężeniach: 0; 4,2; 21 lub 84 mg/m przez 13 tygodni. Nie stwierdzono działania układowego związku po narażeniu zwierząt na bezwodnik o stężeniu 21 lub 84 mg/m Bezwodnik octowy u narażonych zwierząt o stężeniu 4,2 mg/m nie wykazywał działania miejscowego ani układowego. Wartość NOAEŁ dla szczurów została ustalona na poziomie 4,2 mg/m W testach Amesa nie stwierdzono działania mutagennego bezwodnika octowego. Wyniki testu mikrojądrowego na szpiku kostnym szczurów były negatywne. Bezwodnik octowy nie wykazywał ani działania genotoksycznego, ani mutagennego. W dostępnym piśmiennictwie i bazach danych nie znaleziono danych dotyczących działania rakotwórczego bezwodnika octowego. W badaniach doświadczalnych na szczurach nie stwierdzono działania embriotoksycznego, feto- toksycznego ani wpływu na rozrodczość bez- wodnika o stężeniu 105 mg/m chociaż u matek obserwowano silne podrażnienie dróg oddechowych. U dwóch samic narażanych na bez wodnik octowy o stężeniu 420 mg/m stwierdzono całkowitą resorpcję zarodków. W grupie narażanej na bezwodnik o stężeniu 420 mg/m u matek obserwowano ciężkie podrażnienie dróg oddechowych oraz redukcję masy ciała. Wartość NOAEL dla toksyczności rozwojowej i reprodukcyjnej bezwodnika octowego ustalono na poziomie 105 mg/m Brak jest podstaw do ustalenia wartości najwyższego dopuszczalnego stężenia (NDS) dla bez- wodnika octowego. Zaproponowano ustalenie wartości NDS dla bezwodnika octowego przez analogię do kwasu octowego. Wartość NDS dla kwasu octowego ustalono na poziomie 25 mg/m Bezwodnik octowy składa się z dwóch cząsteczek kwasu octowego, więc zaproponowano przyjęcie za wartość NDS dla bezwodnika octowego połowy wartości NDS kwasu octowego, czyli 12 mg/m Ze względu na zabezpieczenia pracowników przed skutkami ostrego działania drażniącego bezwodnika octowego zaproponowano ustalenie wartości najwyższego dopuszczalnego stężenia chwilowego (NDSCh) na poziomie 24 mg/m Ze względu na działanie żrą ce bezwodnika octowego proponuje się oznaczenie go literą „C” (substancja o działaniu żrącym).
Acetic anhydride is a colorless, mobile liquid with a pungent acetic odor. It is used in manufacturing cellulose acetate fibers, plastics, vinyl acetate, pharmaceuticals, dyes and perfumes acetic anhydride is flammable, corrosive and harmful if inhaled or swallowed. It is rapidly hydrolyzed to acetic acid. In workers, acute toxicity of acetic anhydride at concentrations above 21 mg/m was observed in the form irritation of the eyes and mucous membranes of the upper respiratory tract. Higher vapor concentrations may produce ulceration of the nasal mucosa and possible bronchospasm, eye burning followed by corneal and conjunctival edema and corneal opacity. LC in rats is 1680 mg/m LD per os 1780 mg/kg m.c. or 630 mg/kg m.c.; and dermal LD in rabbits is 4000 mg/kg m.c. No systemic effects were observed after expo sure of rats to acetic anhydride at concentrations of 4.2,21 or 84 mg/m for 13 weeks. No evidence of mutagenicity in Ames test was observed. Results iii rat micronucleus assay were negative. Acetic anhydride has no significant mutagenic or genotoxic activity. For rats, the developmental and reproductive toxicity NOAEL is 105 mg/m There are no valid data available that are suitable for establishing a MAC value. MAC estimation by analogy to acetic acid has been proposed. The value of MAC for acetic acid is 25 mg/m Half of that value has been proposed as the value of MAC for acetic anhydride MAC, i.e., 12 mg/m In addition, 24 mg/m has been proposed as a short-term exposure limit (STEL) to protect employees from the irritation of the skin, eyes and mucous membranes of the upper respiratory tract. Consider ing evidence on the corrosive properties of acetic anhydride, additional notation with „C” has been recommended.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2013, 4 (78); 33-46
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Kwas trichlorooctowy
Trichloroacetic acid
Autorzy:
Jankowska, A.
Bystry, K
Czerczak, S.
Powiązania:
https://bibliotekanauki.pl/articles/138486.pdf
Data publikacji:
2011
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
kwas trichlorooctowy
narażenie zawodowe
NDS
trichloroacetic acid
occupational exposure
MAC value
Opis:
Kwas trichlorooctowy (TCA) jest produkowany przez chlorowanie kwasu octowego lub chlorooctowe-go. Powstaje on także jako produkt uboczny przy chlorowaniu wody w reakcji chloru z substancjami humusowymi. Kwas trichlorooctowy jest stosowany głównie do produkcji soli sodowej, która jest wykorzystywana jako selektywny herbicyd. Związek stosuje się w medycynie i w laboratoriach badawczych oraz jako produkt pośredni w syntezie organicznej i nieorganicznej. Kwas trichlorooctowy jest substancją wyso-kotonażową – jej produkcja w Europie, głównie w Niemczech, wyniosła w 2008 r. 5 ÷ 10 000 t. Kwas trichlorooctowy jest zaklasyfikowany jako produkt żrący i niebezpieczny dla środowiska – działa bardzo toksycznie na organizmy wodne, może powodować długo utrzymujące się niekorzystne zmiany w środowisku wodnym, a w roztworach wodnych działa żrąco na skórę i oczy. Dane dotyczące rakotwórczego działania kwasu trichlorooctowego na ludzi są ograniczone. Istnieją dane o powstawaniu gruczolaków i raków wątroby po narażeniu samców myszy B6C3F1 na wzrastające dawki kwasu trichlorooctowego. Substancja ta została zaklasyfikowana przez IARC do grupy III (brak podstaw do klasyfikacji substancji jako rakotwórczej dla ludzi). W wyniku narażenia zwierząt doświadczalnych per os związek działał embriotoksycznie oraz wywoływał wady rozwojowe w tkankach miękkich szczurów (głównie w układzie sercowo-naczyniowym). Większość państw europejskich ustaliła normatyw higieniczny kwasu trichlorooctowego w zakresie 5 ÷ 7 mg/m3, a w ACGIH przyjęto stężenie 6,7 mg/m3 za wartość TWA. Wartości dopuszczalnych stężeń kwasu trichlorooctowego w środowisku pracy nie zostały ustalone w Polsce, Niemczech oraz w Unii Europejskiej. Na podstawie dostępnych danych nie można ustalić zależności dawka-odpowiedź dla działania drażniącego kwasu trichlorooctowego. Nie należy spodziewać się odległych skutków działania tego związku. Zaproponowano przyjęcie dla kwasu trichlorooctowego takich samych wartości dopuszczalnych stężeń jak kwasu monochlorooctowego, związku o podobnej sile działania drażniącego – wartości naj-wyższego dopuszczalnego stężenia (NDS) na poziomie 2 mg/m3 oraz wartości najwyższego dopuszczalnego stężenia chwilowego (NDSCh) na poziomie 4 mg/m3. Zaproponowane wartości normatywów higienicznych powinny zabezpieczyć pracowników przed skutkami działania drażniącego kwasu trichlorooctowego. Nie ma podstaw do ustalenia wartości dopuszczalnego stężenia w materiale biolo-gicznym (DSB) kwasu trichlorooctowego. Zaleca się także oznakowanie związku literą „C” – substancja o działaniu żrącym.
Trichloroacetic acid is used in the production of some herbicides, in medicine, research laboratories, as a solvent and as an intermediate product in organic and inorganic synthesis. Trichloroacetic acid is corrosive by direct skin or eye contact with concentrated aqueous solutions. The primary effect of this substance is local irritation. For trichloroacetic acid there is no reliable dose-response information for sensory irritation. Therefore it was proposed to establish a MAC value for trichloroacetic acid by analogy to monochloroacetic acid. Although there is no dose-response data for the irritation effect of monochloroacet-ic acid, the MAC value was set at 2 mg/m3 and the STEL value at 4 mg/m3 on the basis of expert judgment. Considering evidence on corrosive properties of trichloroacetic acid, additional determination with the “C” letter was proposed.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2011, 3 (69); 133-154
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Trimetyloamina : dokumentacja proponowanych dopuszczalnych wielkości narażenia zawodowego
Trimethylamine : documentation of proposed values of occupational exposure limits (OELs)
Autorzy:
Jankowska, A.
Czerczak, S.
Powiązania:
https://bibliotekanauki.pl/articles/137969.pdf
Data publikacji:
2018
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
trimetyloamina
narażenie zawodowe
NDS
środowisko pracy
trimethylamine
occupational exposure
OEL
working environment
Opis:
Trimetyloamina (TMA) w temperaturze pokojowej jest gazem palnym o bardzo nieprzyjemnym zapachu zepsutych ryb. Próg zapachowy trimetyloaminy znajduje się w przedziale 0,5 ÷ 1,9 μg/m3. Substancja ta bardzo dobrze rozpuszcza się w wodzie. Trimetyloamina jest dostępna jako: bezwodny sprężony gaz, 33-procentowy roztwór w etanolu lub 40-procentowy roztwór wodny. Substancja ta jest głównie stosowana w syntezie organicznej do produkcji soli choliny, a przede wszystkim chlorku choliny. Trimetyloamina jest również stosowana do produkcji: substancji słodzących, skrobi kationowej, środków wabiących owady, środków dezynfekujących, żywicy anionowo-wymiennej mocnej zasady, a także jako przyspieszacz w procesie wulkanizacji, przy produkcji tworzyw sztucznych oraz do produkcji czwartorzędowych związków amoniowych. Ponadto trimetyloaminę stosuje się jako czynnik ostrzegawczy do nawaniania gazu i czynnik flotacyjny. Substancja ta jest zamieszczona w projekcie dyrektywy ustalającej 5. wykaz wskaźnikowych wartości dopuszczalnych z wartością OEL – 4,9 mg/m3 oraz krótkoterminową STEL – 12,5 mg/m3. Głównym skutkiem ostrego i przewlekłego działania trimetyloaminy jest działanie drażniące. Trimetyloamina może być szkodliwa dla ludzi narażonych drogą inhalacyjną, pokarmową lub przez skórę. Narządami krytycznymi w przypadku narażenia na trimetyloaminę są: oczy, skóra oraz górne drogi oddechowe. Próg działania drażniącego trimetyloaminy u ludzi narażonych jednorazowo został ustalony na poziomie 1 481 mg/m3 (mediana). U pracowników narażonych zawodowo na związek o stężeniu 48,5 mg/m³ i większym obserwowano umiarkowane skutki działania drażniącego na: układ oddechowy, oczy oraz skórę. U ludzi zatrudnionych przy produkcji i konfekcjonowaniu trimetyloaminy, narażonych na związek o stężeniach 0,24 ÷ 19,5 mg/m³ (głównie poniżej 12,1 mg/m³), nie obserwowano żadnychskutków zdrowotnych narażenia. Nie ma wyników badań dotyczących działania uczulającego trimetyloaminy. Trimetyloamina nie wykazuje działania mutagennego ani genotoksycznego. W dostępnym piśmiennictwie i bazach danych nie znaleziono informacji odnośnie działania rakotwórczego trimetyloaminy. W badaniach na myszach stwierdzono działanie embriotoksyczne trimetyloaminy. Wartość NOAEL (największa dawka substancji, przy której nie występuje statystycznie lub biologicznie istotny wzrost częstości występowania szkodliwych skutków lub ich nasilenia w grupie narażanej w porównaniu z wynikami badań grupy kontrolnej) dla myszy ustalono na poziomie 150 mg/kg mc./dzień. W 2-tygodniowym badaniu na szczurach ustalono wartość LOAEC (najmniejsze stężenie, przy którym występuje statystycznie lub biologicznie istotny wzrost częstości występowania szkodliwych skutków lub ich nasilenia w grupie narażanej w porównaniu z wynikami badań grupy kontrolnej) wynoszącą 183,75 mg/m³. Skutkiem krytycznym było działanie drażniące trimetyloaminy. Stwierdzono, że działanie układowe wystąpiło przy większych stężeniach. Wartość LOAEC dla działania drażniącego związku na: oczy, nos i gardło u ludzi ustalono na poziomie 48 mg/m³. Nie obserwowano skutków działania toksycznego trimetyloaminy poniżej stężenia 12,1 mg/m³. W większości państw, podobnie jak do tej pory w Polsce, obowiązuje wartość dopuszczalna (NDS) trimetyloaminy wynosząca 12 mg/m³, natomiast dopuszczalne stężenie chwilowe (NDSCh) – 24 mg/m³. W 2017 r. eksperci Komitetu Naukowego ds. Dopuszczalnych Norm Zawodowego Narażenia na Oddziaływanie Czynników Chemicznych w Pracy (SCOEL) zaproponowali stężenie 4,9 mg/m³ jako wartość OEL dla trimetyloaminy w celu uniknięcia szkodliwych skutków działania substancji na drogi oddechowe oraz działania drażniącego sensorycznego. Stwierdzono, że stężenie to będzie zabezpieczało również przed działaniem układowym trimetyloaminy. W celu uniknięcia “uciążliwości zapachowej” i aby zabezpieczyć pracowników przed działaniem drażniącym trimetyloaminy w SCOEL zalecono wartość krótkoterminową STEL na poziomie 12,5 mg/m³. W badaniu na działanie drażniące sensoryczne (czuciowe) na samcach myszy Swiss OF1 wyznaczona wartość RD50 dla trimetyloaminy wynosiła 147,62 mg/m3. Na podstawie wartości RD50 (147,62 mg/m3), stosując współczynnik 0,03, zaproponowano wartość NDS trimetyloaminy na poziomie 4,9 mg/m³. Wartość ta powinna zapobiegać skutkom zdrowotnym narażenia zawodowego na trimetyloaminę zarówno miejscowym, jak i układowym. Z uwagi na działanie drażniące trimetyloaminy na drogi oddechowe zaproponowano zmniejszenie obecnie obowiązującej wartości NDSCh ze stężenia 24 mg/m3 na stężenie 12,5 mg/m3. Normatyw oznakowano literą „I” (substancja o działaniu drażniącym). Nie ma podstaw merytorycznych do ustalenia wartości dopuszczalnego stężenia w materiale biologicznym (DSB).
Trimethylamine (TMA) is a gas at ambient temperature, which has a pungent, fishy odour. It is commercially available as a compressed gas, 40% aqueous solution or a 33% solution in ethanol. It is used in organic synthesis, especially of choline salts, as a warning agent for natural gas and flotation agents, in the production of cationic starches, quaternary ammonium compounds, intense sweeteners and strongly basic anion exchange resins. Moreover, it is used in the production of disinfectants and insect attractants. TMA is irritating to the human respiratory tract, skin and eyes. The threshold of irritation was reported to be 1481 mg/m3 (median) after a single dose. No effects were observed in workers exposed to 0.24-19.5 mg/m³, most measurements being below 12.1 mg/m3 . A LOAEC of 48 mg/m³ was established for human based on eyes, nose and throat irritation. Animal data with repeated inhalation exposure over 2 weeks revealed a LOAEC of 183.75 mg/m³ based on respiratory irritation in a rat study. Embryotoxic effects were observed in mice (NOAEL of 150 mg/kg bw/day). The Scientific Committee for Occupational Exposure Limits to Chemical Agents (SCOEL) has established OEL of 4.9 mg/m³ and STEL of 12.5 mg/m³. A MAC value has been derived using the RD50 value (147.62 mg/m3 for TMA) and multiplying it by a factor of 0.03. The Expert Group for Chemicals Agents has proposed to reduce the current MAC value from 12 mg/m³ to 4.9 mg/m³ and the current STEL value from 24 mg/m³ to 12.5 mg/m³, which is also in accordance with the values recommended by SCOEL. It has been proposed to remain the “I” (irritant) labelling of TMA. No bases for a BEI value have been found.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2018, 4 (98); 147-165
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Kumen : dokumentacja proponowanych dopuszczalnych wielkości narażenia zawodowego
Cumene : documentation of proposed values of occupational exposure limits (OELs)
Autorzy:
Jankowska, A.
Czerczak, S.
Powiązania:
https://bibliotekanauki.pl/articles/138412.pdf
Data publikacji:
2017
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
kumen
narażenie zawodowe
NDS
środowisko pracy
cumene
occupational exposure
OEL
working environment
Opis:
Kumen jest lotną, bezbarwną cieczą o ostrym aromatycznym zapachu podobnym do zapachu benzyny. Jest stosowany w syntezie organicznej do produkcji fenolu i acetonu, jako rozpuszczalnik: farb, lakierów i żywic, a także dodatek do paliw lotniczych. Kumen stosuje się także w przemyśle drukarskim i gumowym. Według informacji udostępnionych przez Państwowy Inspektorat Sanitarny w Polsce nie odnotowano w 2010 r. przekroczeń obecnie obowiązującej wartości NDS kumenu, tj. 100 mg/m³, natomiast w 2014 r. 51 osób było narażonych na kumen o stężeniach wynoszących od 0,1 (tj. 10 mg/m³) do 0,5 obowiązującej wartości NDS (tj. 50 mg/m³). Pary kumenu wykazują działanie drażniące na drogi oddechowe. U ludzi duże stężenia kumenu w powietrzu spowodowały bolesne podrażnienie oczu i górnych dróg oddechowych. Kumen wykazuje niską toksyczność ostrą. U zwierząt doświadczalnych głównymi skutkami narażenia inhalacyjnego na kumen było upośledzenie funkcji ośrodkowego układu nerwowego. W narażeniu przewlekłym kumen wykazywał działanie hepatotoksyczne. W badaniach w warunkach in vitro kumen nie wykazywał działania genotoksycznego ani mutagennego. W badaniach in vivo test mikrojądrowy dał wynik dodatni jedynie wówczas, gdy kumen podano dootrzewowo szczurom. Natomiast test kometowy wskazywał na zależny od wielkości dawki kumenu wzrost uszkodzenia DNA tylko w hepatocytach u samców szczurów i komórkach płuc samic szczurów. Z kolei, metabolit kumenu – α-metylostyren nie wykazywał działania mutagennego w testach na bakteriach, natomiast powodował uszkodzenie chromosomów w kulturach komórkowych oraz komórkach gryzoni. Eksperci IARC zaliczyli kumen do grupy 2.B – czynników przypuszczalnie rakotwórczych dla ludzi na podstawie wystarczających dowodów działania rakotwórczego kumenu na zwierzęta. Inhalacyjne narażenie myszy prowadziło do wzrostu częstości występowania: gruczolaków i raków pęcherzykowych oskrzelikowych, naczyniakomięsaków krwionośnych w śledzionie samców myszy oraz gruczolaków i raków wątrobowokomórkowych u samic myszy. U szczurów narażanych inhalacyjnie na kumen stwierdzono wzrost występowania gruczolaków nabłonka oddechowego nosa u zwierząt obu płci. U samców szczurów obserwowano wzrost występowania gruczolaków i raków kanalików nerkowych. Kumen jest dobrze wchłaniany wszystkimi drogami narażenia. Jest substancją lipofilną, która jest dobrze rozmieszczana w organizmie. Metabolizm kumenu w organizmie przebiega z udziałem cytochromu P-450. Głównym metabolitem zidentyfikowanym w moczu był 2-fenylo-2-propanol, natomiast w wydychanym powietrzu wykryto kumen oraz α-metylostyren. W 2014 r. eksperci Scientific Committee for Occupational Exposure Limits to Chemical Agents (SCOEL) przygotowali zmianę wartości wskaźnikowej kumenu, tj. zmniejszenie stężenia 100 mg/m3 (dyrektywa 2000/39/WE) do 50 mg/m³, natomiast pozostawienie wartości STEL na tym samym poziomie, tj. 250 mg/m³. Związek zaliczono do grupy D związków rakotwórczych, czyli do związków, które nie działają genotoksycznie i nie oddziałują na DNA, dla których można ustalić wartość dopuszczalną na podstawie wartości NOAEL. Polska nie zgłosiła uwag do proponowanej przez SCOEL wartości OEL oraz STEL dla kumenu w trakcie konsultacji publicznych, które trwały do września 2014 r. Nowa wartość wskaźnikowa została ustalona na pod-stawie 3-miesięcznego badania National Toxicology Program (NTP) na szczurach i myszach oraz przyjętej wartości NOAEC na poziomie około 310 mg/m³ (62,5 ppm) dla działania hepatotoksycznego kumenu. Eksperci SCOEL ustalili wartość STEL kumenu na poziomie 250 mg/m³, ze względu na działanie drażniące par kumenu na drogi oddechowe oraz na ośrodkowy układ nerwowy. Ponadto przyjęto notację „skin” dla kumenu, ze względu na możliwość wchłaniania się substancji przez skórę. Za dopuszczalne stężenie w materiale biologicznym (DSB) eksperci SCOEL ustalili 7 mg 2-fenylo-2-propanolu/g kreatyniny (po hydrolizie moczu). Wartość najwyższego dopuszczalnego stężenia (NDS) kumenu ustalono na podstawie działania hepatotoksycznego oraz nefrotoksycznego (zwiększenie masy wątroby i nerek). Za wartość NOAEC przyjęto stężenie kumenu równe 310 mg/m3 ustalone na podstawie wyników 3-miesięcznego badania NTP na szczurach. Zaproponowano zmniejszenie do 50 mg/m³ obowiązującej wartości NDS – 100 mg/m3. Z uwagi na działanie drażniące par kumenu na drogi oddechowe oraz na ośrodkowy układ nerwowy zaproponowano pozostawienie obowiązującej wartości najwyższego dopuszczalnego stężenia chwilowego (NDSCh) na poziomie 250 mg/m³, co odpowiada wartości STEL przyjętej w SCOEL. Zaproponowano także wartość dopuszczalnego stężenia w materiale biologicznym (DSB) równą 7 mg 2-fenylo-2-propanolu/g kreatyniny w moczu (dla próbek poddanych hydrolizie i pobranych bezpośrednio po zakończeniu zmiany roboczej). Zalecono pozostawienie oznakowania związku literą „I” (substancja o działaniu drażniącym) oraz notą „skóra” (wchłanianie substancji przez skórę może być tak samo istotne, jak przy narażeniu drogą oddechową).
Cumene is a clear, colourless liquid with a strong aromatic gasoline-like odour. Cumene is used for the synthesis of phenol and acetone and as a solvent in paints, varnishes and resins. It is also used in the printing and rubber industries. According to data from Polish Chief Sanitary Inspectorate, in 2010, no workers were occupationally exposed to cumene in concentrations exceeding Polish OEL values (100 mg/m3 ). In 2014, 51 workers were exposed to cumene in concentrations from 0.1 to 0.5 MAC value (from 10 mg/m3 to 50 mg/m3 ). Cumene vapours are irritating to the respiratory tract. In humans, high concentrations of cumene cause painful irritation to the eyes and the respiratory tract. In animals, cumene causes mainly CNS depression. Chronic exposure to cumene can cause hepatotoxicity. In vitro tests indicated no mutagenic and no genotoxic potential of cumene. Intraperitoneal injection of cumene induced micronuclei in bone marrow of rats. Dose-related increases in DNA damage were observed in liver cells of male rat and lung cells of female mouse. A metabolite of cumene, α-methylstyrene, was not mutagenic in bacterial tests but induced chromosomal damage in cell cultures and rodent cells. IARC experts classified cumene in group 2.B – chemicals possibly carcinogenic to humans based on sufficient evidence in experimental animals for the carcinogenicity of cumene. Exposure of mice to cumene by inhalation increased the incidence of alveolar/bronchiolar adenoma and carcinoma in males and females mice, haemangiosarcoma of the spleen in male mice and hepatocellular adenoma in female mice. Exposure of rats to cumene by inhalation increased the incidence of nasal adenoma in males and females and renal tubule adenoma and carcinoma in male rats. Cumene is well absorbed. It is a lipophilic substance which is well distributed in the whole body. Cytochrome P-450 is involved in cumene metabolism. Main metabolite identified in urine was 2-phenyl-2-propanol and in exhaled air α-methylstyrene. In 2014, Scientific Committee for Occupational Exposure Limits to Chemical Agents (SCOEL) prepared change of indicative OEL for cumene – reduction of concentration from 100 mg/m3 (directive 2000/39/WE) to 50 mg/m³, STEL value 250 mg/m3 remain unchanged. The compound was included in SCOEL carcinogenicity group D (not genotoxic and not affecting DNA chemicals), for which a health-based OEL may be derived on the basis of NOAEL value. Poland did not submit any comments on SCOEL proposal during public consultations in 2014. A new indicative OEL was derived on the basis of 3-month NTP inhalation studies in rats and mice. SCOEL established 310 mg/m³ (62.5 ppm) level as a NOAEC for hepatotoxicity. A STEL of 250 mg/m3 (50 ppm) have been recommended to protect against respiratory tract irritation and behavioural effects. Moreover, a “skin notation” was recommended because of its probable skin penetration. BLV recommended by SCOEL is 7 mg 2-phenyl-2-propanol per gramme of creatinine in urine (after hydrolysis). To determine MAC value for cumene hepatotoxicity and nephrotoxicity were adopted as a critical effect. The Expert Group for Chemicals Agents established 310 mg/m³ as NOAEC based on 3-month NTP inhalation studies in rats and proposed reduction of the current MAC value from 100 to 50 mg/m3 . It was agreed that the previous STEL value of 250 mg/m3 should remain unchanged, which is also in accordance with the value recommended by SCOEL. Recommended BEI value is 7 mg 2-phenyl-2-propanol per gramme of creatinine in urine (after hydrolysis), sampled immediately after work shift. It was recommended to remain “I” (irritant) and “Sk” (substance can penetrate skin) labelling of cumene.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2017, 1 (91); 63-95
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Terpentyna
Turpentine
Autorzy:
Kupczewska-Dobecka, M.
Czerczak, S.
Powiązania:
https://bibliotekanauki.pl/articles/138414.pdf
Data publikacji:
2006
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
terpentyna
terpeny
wartości NDS
narażenie zawodowe
turpentine
terpenes
MAC
OEL
occupational exposure
Opis:
Terpentyna jest mieszaniną olejków eterycznych i żywic otrzymywanych z miękkich drzew iglastych. Zawiera głównie terpeny, które są powszechnie występującymi grupami naturalnych związków chemicznych z fragmentami szkieletu węglowego izoprenu (2-metylo-1,3-butadienu). Zidentyfikowano ponad 4000 terpenów. Główne składniki terpentyny to dwupierścieniowe monoterpeny: α-pinen, β-pinen i Δ3-karen o wzorze C10H16. Skład chemiczny terpentyny jest zmienny i zależy od źródeł pochodzenia i metod jej otrzymywania. Terpentyna znalazła zastosowanie głównie w syntezie organicznej jako substrat do produkcji kamfory i mentolu oraz jako rozpuszczalnik do farb, żywic, wosków, środków polerujących i czyszczących, a także w przemyśle perfumeryjnym i w praktyce weterynaryjnej jako środek wykrztuśny oraz antyseptyczny. Terpentyna występuje jako produkt uboczny w produkcji papieru i masy celulozowej (terpentyna siarczanowa). Pary terpentyny wydzielają się z pyłem drewna podczas jego piłowania i obróbki. Wartości medialnych stężeń śmiertelnych par terpentyny u szczurów wynoszą od 12 040 mg/m3 (w ciągu 6 h narażenia) do 20 104 mg/m3 (w ciągu 1 h narażenia). Dla myszy wartość CL50 wynosi 29 000 mg/m3 (2 h). Wartość LD50 dla szczurów po podaniu dożołądkowym wynosi 5760 mg/kg m.c. Wyznaczone wartości RD50 dla monoterpenów wynoszą: 7478,2 mg/m3 dla (+)-Δ3-karenu, 7560 mg/m3 dla terpentyny i 5854 mg/m3 dla (+)-α-pinenu oraz 7094 mg/m3 dla (+)-β-pinenu. Terpentyna nie jest klasyfikowana pod kątem działania rakotwórczego. Terpentyna może wchłaniać się do organizmu z układu pokarmowego, przez skórę i z układu oddechowego. Wchłanianie przez płuca wynosiło 60 ÷ 70%. Główne metabolity terpentyny to cis- i trans-verbenole, których produktami hydroksylacji są następnie diole. Rozpiętość oszacowanych dawek śmiertelnych po połknięciu terpentyny u ludzi jest duża i wynosi 15 ÷ 110 g. Pary terpentyny wykazują działanie drażniące na skórę, błony śluzowe i oczy, a także mogą powodować zmiany w parametrach spirometrycznych funkcji płuc. Skutkiem narażenia na terpentynę jest zarówno alergiczne, jak i niealergiczne kontaktowe zapalenie skóry. Opisano przypadki wystąpienia skutków ostrego działania drażniącego na błony śluzowe nosa, oczu, skóry i dróg oddechowych, uszkodzenia nerek i śmierć po narażeniu zawodowym na pary terpentyny. Nie ma w dostępnym piśmiennictwie danych ilościowych charakteryzujących ostre narażenie inhalacyjne. W tartakach i zakładach stolarskich objawy podrażnienia oczu występowały u ludzi narażonych zawodowo na mieszaninę terpenów już o stężeniach rzędu 70 mg/m3. Obserwowane skutki można przypisać łącznemu działaniu terpenów i pyłów drewna o stężeniach 0,1 ÷ 4,6 mg/m3, dlatego danych tych nie wykorzystano do wyliczenia wartości NDS. Za wartość NOAEL terpentyny postanowiono przyjąć stężenie 225 mg/m3, które wyznaczono w eksperymencie na ochotnikach, podczas którego nie obserwowano objawów podrażnienia oczu, nosa, gardła i subiektywnych objawów ze strony ośrodkowego układu nerwowego (OUN) oraz statystycznie znamiennych zmian w parametrach funkcji płuc. Przyjmując współczynnik związany z wrażliwością osobniczą człowieka równy 2, proponuje się przyjąć stężenie 112 mg/m3 za wartość NDS terpentyny, a stężenie 300 mg/m3 za jej wartość NDSCh, ze względu na działanie drażniące związku. Wyznaczona wartość RD50 dla terpentyny wynosi 7560 mg/m3, stąd proponowana wartość NDS stanowi około 0,01 wartości RD50.
Turpentine is a general term for crude oleoresin obtained from soft wood conifers. Turpentine is a mixture of substances, mostly terpenes (58%.65). Terpenes are an ubiquitous group of natural compounds, with over 4000 identified, derived from units of isoprene (2-methyl-1,3-butadiene). Major components of turpentine are α-pinene, β-pinene, Δ3-carene, which are bicyclic monoterpenes with the molecular formula of C10H16. Turpentine is a by-product in the paper and pulp industry. Terpene vapors are also released with the dust during the process of sawing and treating timber and boards.Turpentine was formerly the most widely used paint thinner. It is also used as a solvent for various resins, polishes, and waxes. Turpentine is used in veterinary practice as an expectorant, rubifacient, and antiseptic, owing to its anti-microbial properties. Turpentine is increasingly being used as a raw material for making chemicals; turpentine and its monoterpenes are employed in liniments, perfumery, and in the synthesis of camphor and menthol. LC50 values for turpentine vapor in rats of 20,104 mg/m3 for 1-hour exposure and 12,040 mg/m3 for 6-hour exposure have been established. Signs of acute turpentine intoxication included ataxia, tremor, convulsions, tachypnea, decreased tidal volume, and death due to sudden apnea. Turpentine has an RD50 of 7560 mg/m3. Turpentine is a skin and mucous membrane irritant and sensitiser, and in high concentrations, a CNS depressant. Various chamber studies in healthy volunteers have shown that there is significant reporting of eye, nose, and throat irritation from turpentine, pinenes and Δ3-carene for 2-hour exposures with light exercise at 450 mg/m3, as well as an increase of airway resistance. In occupational exposure study with healthy volunteers, it has been found that TLco and alveolar volume decrease after exposure. This study showed that healthy volunteers exposed to sawmill air contaminants experienced an acute inflammatory reaction in the upper airways. In occupational studies, the association between exposure to terpenes and acute effects on lung function with personal exposures ranging from 11 to 158 mg/m3 of terpenes has been evaluated. A significant decrease in the carbon monoxide lung diffusing capacity was identified. In setting exposure limits, chamber studies were considered. Based on the NOAEL value of 225 mg/m3 and the relevant uncertainty factors, a MAC (TWA) value was calculated at 112 mg/m3 for turpentine to minimize the potential for upper respiratory tract irritation. MAC (STEL) value of 300 mg/m3 is recommended. Notations “I” (irritating substance) and “A” (sensitising substance) are recommended.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2006, 2 (48); 159-187
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
2-Toliloamina : dokumentacja proponowanych dopuszczalnych wielkości narażenia zawodowego
o-Toluidine : documentation of proposed values of occupational exposure limits (OELs)
Autorzy:
Pałaszewska-Tkacz, A.
Świdwińska-Gajewska, A
Czerczak, S.
Powiązania:
https://bibliotekanauki.pl/articles/137551.pdf
Data publikacji:
2018
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
2-toliloamina
narażenie zawodowe
toksyczność
NDS
o-toluidine
occupational exposure
toxicity
MAC-TWA
Opis:
2-Toliloamina jest substancją wielkotonażową stosowaną w przemyśle: gumowym, barwiarskim, farmaceutycznym oraz do produkcji herbicydów i jako surowiec do przemysłowej produkcji innych związków chemicznych. Szacowana liczba osób zawodowo narażonych na 2-toliloaminę w UE wynosi 5 500, z czego ponad połowa jest zatrudniona w: przemyśle chemicznym, przy produkcji włókien chemicznych oraz produktów gumowych. W warunkach narażenia zawodowego 2-toliloamina wchłania się do organizmu drogą inhalacyjną i przez skórę i niezależnie od drogi narażenia związek ten jest wydalany głównie z moczem. Wśród skutków ostrego inhalacyjnego narażenia na duże stężenia 2-toliloaminy (> 25 mg/m3) są opisywane: podrażnienie górnych dróg oddechowych, oczu i skóry objawiające się uczuciem pieczenia twarzy, oczu, gardła oraz kaszlem, skrócenie oddechu, osłabienie, nudności, wymioty, bóle i zawroty głowy, szum w uszach, methemoglobinemia, hematuria i zaburzenia czynności nerek oraz krwotoczne zapalenie pęcherza moczowego. W badaniach epidemiologicznych analizowano najczęściej grupę substancji, jaką są aminy aromatyczne (w tym 2-toliloamina). Dostępne dane dotyczą głównie narażenia w przemyśle barwiarskim oraz gumowym. Jako skutki narażenia przewlekłego opisywano: methemoglobinemię, hematurię oraz uszkodzenie nabłonka pęcherza moczowego z czasem prowadzące do rozwoju nowotworów złośliwych tego narządu. Działanie rakotwórcze 2-toliloaminy zostało również potwierdzone w badaniach przeprowadzonych na zwierzętach doświadczalnych, w tym na szczurach i myszach. Narażenie drogą pokarmową na 2-toliloaminę wywoływało nowotwory pęcherza moczowego, przede wszystkim u samic szczura, w mniejszym stopniu u samców. U samic szczura F344, narażanych wraz z paszą na 2-toliloaminę, obserwowano statystycznie znamienny, zależny od dawki, wzrost częstości występowania raka z komórek przejściowych pęcherza moczowego. Ponadto u myszy i szczurów występowały: włókniaki i włókniakomięsaki w tkance podskórnej, naczyniaki i naczyniakomięsaki zlokalizowane w jamie brzusznej i pęcherzu moczowym, międzybłoniaki różnych narządów, mięsakonaczyniaki w różnych narządach, raki z komórek wątrobowych i gruczolaki. U zwierząt doświadczalnych 2-toliloamina wykazuje umiarkowaną toksyczność ostrą: wartości LD50 dla podania dożołądkowego mieszczą się w przedziale 670 ÷ 2 951 mg/kg mc. W badaniach toksyczności ostrej u szczurów narażanych inhalacyjnie obserwowano: sinicę, skurcze i drżenia mięśni, trudności w oddychaniu, czerwono-brązowy wyciek z nosa, zmętnienie rogówki, spadek masy ciała, obniżenie temperatury ciała, ospałość, skrajne wyczerpanie. Opisane w literaturze skutki narażenia podprzewlekłego i przewlekłego zwierząt doświadczalnych na 2-toliloaminę obejmują zmiany w obrębie: śledziony, układu krwiotwórczego oraz nerek i pęcherza moczowego. Na podstawie wyników większości badań mutagenności w układach bakteryjnych nie potwierdzono działania mutagennego 2-toliloaminy, jedynie w nielicznych pracach opisywano wynik dodatni testów po aktywacji metabolicznej. Zarówno w badaniach w warunkach in vitro, jak i in vivo, potwierdzono natomiast indukcję uszkodzeń DNA przez 2-toliloaminę. 2-Toliloamina ma klasyfikację zharmonizowaną w UE jako substancja rakotwórcza kategorii zagrożenia 1.B z przypisanym zwrotem H350 – może powodować raka. Eksperci SCOEL zaliczyli ją do grupy A kancerogenów, czyli substancji rakotwórczych mających właściwości genotoksyczne. W Niemczech, w DFG, zaliczono 2-toliloaminę do kategorii 1. kancerogenów, czyli do sub¬stancji, które powodują raka u człowieka i substancji, co do których przyjmuje się, że znacząco wpływają na ryzyko wystąpienia raka. W IARC zaklasyfikowano ją do grupy 1., czyli związków o potwierdzonym działaniu rakotwórczym na ludzi. Na podstawie ilościowej oceny ryzyka wystąpienia nowotworu w wyniku narażenia zawodowego oszacowano, że w przy 40-letnim okresie narażenia na 2-toli¬loaminę o stężeniu 1 mg/m3 dodatkowe ryzyko wystąpienia raka pęcherza moczowego wynosi 2,4 ÷ 3,1 10-4 (w zależności od metody szacowania). Wartości dopuszczalnych stężeń 2-toliloaminy obowiązujące w krajach członkowskich UE oraz na świecie wynoszą: 0,5 ÷ 0,9; 4,5 ÷ 8,8 oraz 22 mg/m³. W Polsce obowiązująca wartość NDS wynosi 3 mg/m3. W SCOEL nie zaproponowano wiążącej wartości BOELV, uznając 2-toliloaminę za genotoksyczny kancerogen. W dyrektywie Parlamentu Europejskiego i Rady (UE) 2017/2398 z dnia 12 grudnia 2017 r. zmieniającej dyrektywę 2004/37/WE w sprawie ochrony pracowni¬ków przed zagrożeniem dotyczącym narażenia na działanie czynników rakotwórczych lub mutagenów pod¬czas pracy przyjęto stężenie 0,5 mg/m3 (0,1 ppm) jako wartość wiążącą dla 2-toliloaminy (na podstawie: ana¬lizy socjoekonomicznej, oceny ryzyka środowiskowego oraz ryzyka wystąpienia raka pęcherza moczowego u pracowników narażonych zawodowo). Zaproponowano zmniejszenie wartości NDS 2-toliloaminy do poziomu 0,5 mg/m3, co wpłynie na blisko dziesięciokrotne zmniejszenie ryzyka zachorowania na raka pęcherza moczowego pracowników. Ponadto, zgodnie z danymi Głównego Inspektoratu Sanitarnego (GIS), w Polsce w latach 2015-2016 nie stwierdzono narażenia na 2-toliloaminę o stężeniach > 3 mg/m3 oraz > 1,5 mg/m3 (0,5 wartości NDS), natomiast w warunkach narażenia na stężenia z zakresu 0,3 ÷ 1,5 mg/m3 (0,1 ÷ 0,5 wartości NDS) pracowało jedynie kilkanaście osób. Nie ma podstaw do ustalenia wartości najwyższego dopuszczalnego stężenia chwilowego (NDSCh). Jako wartość dopuszczalnego stężenia w materiale biologicznym (DSB) 2-toliloaminy zaproponowano pozostawienie jak dotychczas 2% poziomu MetHb we krwi. Normatyw oznakowano: „skóra” (wchłanianie substancji przez skórę może być tak samo istotne, jak przy narażeniu drogą oddechową) oraz „Carc. 1B” (substancja rakotwórcza kategorii zagrożenia 1.B).
o-Toluidine is a substance produced in large amounts and used in rubber, dyeing and pharmaceutical industries and in the production of herbicide and other chemical compounds. The estimated number of people occupationally exposed to o-toluidine in EU is 5 500, half of them is employed in chemical industry in the production of chemical fibers and rubber products. In the conditions of occupational exposure, o-toluidine is absorbed by skin and by inhalation. Regardless of route of exposure this compound is excreted in urine. The effects of acute inhalation exposure to high concentrations (> 25 mg/m3 ) of o-toluidine are irritation of upper respiratory tract, irritation of eyes and skin, which is manifested by face, eyes and pharynx burning, cough, shortness of breath, weakness, nausea, vomit, headache and dizziness, tinnitus, methemoglobinemia, hematuria and hemorrhagic cystitis. In epidemiological studies, the mostly analyzed group of substances was aromatic amines (including o-toluidine). Available data mainly refer to exposure in dyeing and rubber industries. Described effects of chronic exposure are methemoglobinemia, hematuria and damage of bladder epithelium leading to malignant tumor of this organ. Carcinogenicity of o-toluidine was confirmed in tests on experimental animals, including rats and mice. Oral exposure to o-toluidine results in bladder cancer, primarily in female rats, to a lesser extent in male rats. In female rats F344 exposed to o-toluidine with feed, increase of the incidence of cancer from the bladder transitional cells was observed. Furthermore, in mice and rats fibromas and fibrosarcomas in subcutaneous tissue, angiomas and angiosarcomas in abdominal cavity and bladder, mesotheliomas of various organs, angiosarcomas in various organs, hepatocellular carcinomas and adenomas were observed. In experimental animals, o-toluidine exhibits moderate acute toxicity, LD50 values for intragastric administration are within the range 670 – 2951 mg/kg bw. In acute toxicity studies, rats exposed by inhalation to o-toluidine had cyanosis, contractions and muscle tremor, difficulty in breathing, red-brown rhinorrhea, corneal opacification, body weight loss, body temperature decrease, lethargy and extreme exhaustion. The effects of subchronic and chronic exposure of experimental animals to o-toluidine described in the literature include changes in the spleen, hematopoietic system, kidneys and bladder. Most of the mutagenicity tests in bacterial systems do not confirm mutagenicity of o-toluidine. A few works only described positive test result after metabolic activation. Both in vitro and in vivo studies confirmed induction of DNA damage by o-toluidine. o-Toluidine has harmonized classification in the EU as a category 1B carcinogen with assigned phrase H350 – may cause cancer. SCOEL experts classified it to group A of carcinogens, which means carcinogens with genotoxic properties. In Germany, DFG has ranked o-toluidine into category 1 of carcinogens, so substances that cause cancer in humans and substances that are believed to significantly affect the risk of cancer. IARC classified it into group 1, compounds with confirmed human carcinogenicity. On the basis of a quantitative assessment of the risk of cancer as a result of occupational exposure, it has been estimated that at a 40-year exposure period to o-toluidine at a concentration of 1 mg/m3 , the additional risk of bladder cancer ranges from 2.4 – 3.1 • 10-4 (depending on the estimation method). The values of the determining exposure limits of o-toluidine applicable in the EU member states and in the world are 0.5 – 0.9 mg/m3 ; 4.5–8.8 mg/m3 and 22 mg/m3 . In Poland, the applicable OEL value is 3 mg/m3 . In SCOEL, no BOELV had been proposed, considering o-toluidine as a genotoxic carcinogen. Directive 2017/2398 of the European Parliament and of the Council (EU) of 12 December 2017 amending Directive 2004/37/EC on the protection of workers from the risks related to exposure to carcinogens or mutagens at work, a concentration of 0.5 mg/m3 was adopted (0.1 ppm) as a binding value for o-toluidine (based on socio-economic analysis, environmental risk assessment and risk of bladder cancer in professionally exposed workers). It has been proposed to reduce the OEL value of o-toluidine to 0.5 mg/m3 , which will affect a nearly tenfold reduction in the risk of bladder cancer workers. In addition, according to CSI (Chief Sanitary Inspectorate) data in Poland, no exposure to o-toluidine in concentrations > 3 mg/m3 and > 1.5 mg/m3 (0.5 OEL values) have been found in years 2015–2016, while in conditions of exposure to concentrations from within the range of 0.3 – 1.5 mg/m3 (0.1 – 0.5 of the OEL value), a dozen or so people only worked. There is no basis for determining the short-term exposure limit value (STEL). As a value of biological exposure index (BEI) of o-toluidine, it has been proposed to leave 2% level of the MetHb in the blood. The standard was labeled “skin” (the absorption of substances through the skin may be as important as in inhalation) and “Carc. 1B” (carcinogenic substance of category 1B).
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2018, 3 (97); 77-117
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Akrylan etylu. Dokumentacja proponowanych wartości dopuszczalnych wielkości narażenia zawodowego
Ethyl acrylate
Autorzy:
Soćko, R.
Czerczak, S.
Powiązania:
https://bibliotekanauki.pl/articles/137642.pdf
Data publikacji:
2005
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
akrylan etylu
wartości normatywów higienicznych
działanie drażniące
irritation
exposure limit value
ethyl acrylate
Opis:
Akrylan etylu jest bezbarwną lotną cieczą o ostrym, gryzącym zapachu, powszechnie stosowaną w przemyśle chemicznym, włókienniczym, skórzanym, papierniczym, farmaceutycznym i kosmetycznym. Stosowana jest także do produkcji tworzyw sztucznych, włókien syntetycznych, gumy syntetycznej, klejów, farb i lakierów, a także do impregnacji włókien sztywnikowych, tkanin dekoracyjnych, wykładzin podłogowych i papieru. Akrylan etylu w warunkach przemysłowych wchłania się głównie przez układ oddechowy, ze względu na swą dużą lotność. Ponadto, w postaci ciekłej wchłania się przez nieuszkodzoną skórę w ilościach mogących spowodować zatrucia. W obowiązującym w Polsce wykazie niebezpiecznych substancji chemicznych akrylan etylu został zaklasyfikowany jako produkt wysoce łatwo palny, szkodliwy, drażniący i uczulający. U ludzi przewlekle narażonych na pary akrylanu etylu stwierdzono przede wszystkim objawy podrażnienia skóry twarzy oraz błon śluzowych oczu i górnych dróg oddechowych. Osoby narażone uskarżały się na dolegliwości o charakterze neurowegetatywnym (np. bóle głowy czy zwiększoną pobudliwość). U zwierząt narażanych przewlekle na akrylan etylu stwierdzono podrażnienie błon śluzowych oczu i górnych dróg oddechowych oraz zaburzenie oddychania, zaburzenia spontanicznej aktywności i koordynacji ruchowej. W badaniach patomorfologicznych narządów wewnętrznych tych zwierząt stwierdzono, że akrylan etylu powoduje uszkodzenie płuc, żołądka, wątroby, śledziony i nerek. W dostępnym piśmiennictwie nie ma doniesień o odległych skutkach narażenia na akrylan etylu u ludzi. Na podstawie wyników badań na zwierzętach przypuszcza się, że związek w dużych dawkach wykazuje działanie embriotoksyczne. Na podstawie wyników badań metabolizmu związku u zwierząt wykazano, że akrylan etylu w organizmie zwierząt ulega hydrolizie do kwasu akrylowego i alkoholu etylowego bądź zostaje sprzęgnięty z niskocząsteczkowymi związkami zawierającymi grupy sulfhydrylowe. Na podstawie wyników uzyskanych z badań przeprowadzonych w warunkach in vivo sądzi się, że akrylan etylu nie wykazuje działania mutagennego i genotoksycznego, natomiast na podstawie danych z badań in vitro wykazano jego działanie klastogenne. W Międzynarodowej Agencji Badań nad Rakiem (IARC) zaklasyfikowano akrylan etylu do grupy 2B, czyli do związków prawdopodobnie rakotwórczych dla ludzi, natomiast Amerykańska Konferencja Rządowych Higienistów Przemysłowych (ACGIH) zaklasyfikowała go do grupy A4, czyli do związków nieklasyfikowanych jako rakotwórcze dla ludzi. W Unii Europejskiej nie klasyfikuje się akrylanu etylu pod względem działania rakotwórczego. Celem ustalenia wartości najwyższego dopuszczalnego stężenia (NDS) akrylanu etylu uwzględniono wyniki z doświadczenia inhalacyjnego 27- lub 24-miesięcznego, które przeprowadzono na szczurach i myszach obu płci. Wartość NOAEL określona na podstawie działania drażniącego związku wynosiła 20 mg/m3. Proponowana wartość NDS wynosi 20 mg/m3. Wartość proponowanego najwyższego stężenia chwilowego (NDSCh) akrylanu etylu wynosi 40 mg/m3. Ponieważ związek ten działa uczulająco, drażniąco i wchłania się przez skórę, dlatego proponujemy oznaczyć go odpowiednimi literami: „A” – działanie uczulające, „I” – działanie drażniące i „Sk” – wchłania się przez skórę.
Ethyl acrylate is a colorless liquid with an acrid odor. Ethyl acrylate is used to make acrylic resins and as emulsion and solution polymers for surface coating textiles, paper, and leather. It is also used in the production of acrylic fibers, adhesives, and binders. Ethyl acrylate has limited use as a fragrance and flavoring agent. The acute toxicity of ethyl acrylate for laboratory animals is moderate by all routes of administration. The subcutaneous LD50 for rabbit is 1790 mg/kg, and the oral LD50 for the rat is 1020 mg/kg. The liquid and vapor phases of ethyl acrylate are irritating to the eyes, the skin and mucous membranes. Prolonged worker inhalation exposure to ethyl acrylate produced drowsiness, headache, and nausea. Limited data indicate the potential for ethyl acrylate to produce skin sensitization. Based on animal exposure data of a chronic irritation study we established 20 mg/m3 as the maximum exposure limit value for ethyl acrylate. This value should minimize adverse lacrimation and irritation of the skin and respiratory tract. STEAL value of 40 mg/m3. Because ethyl acrylate has been shown to penetrate the skin in amounts sufficient to induce systemic toxicity, the skin notation is considered appropriate. According to the irritant and sensitized effect of ethyl acrylate we suggest an additional determination with letters “I” and “A”.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2005, 2 (44); 5-28
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies