Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "zawodowe" wg kryterium: Temat


Tytuł:
Nanocząstki ditlenku tytanu – działanie biologiczne
Titanium dioxide nanoparticles – Biological effects
Autorzy:
Świdwińska-Gajewska, Anna M.
Czerczak, Sławomir
Powiązania:
https://bibliotekanauki.pl/articles/2166213.pdf
Data publikacji:
2015-01-09
Wydawca:
Instytut Medycyny Pracy im. prof. dra Jerzego Nofera w Łodzi
Tematy:
ditlenek tytanu
nanocząstki
narażenie zawodowe
działanie toksyczne
titanium dioxide
nanoparticles
occupational exposure
toxicity
Opis:
Ditlenek tytanu (TiO₂) może występować w postaci cząstek o różnej wielkości. Najczęściej wykorzystywane są cząstki o rozmiarze do 100 nm odpowiadające wielkością nanocząstkom oraz cząstki o wielkości z przedziału 0,1–3 mm. Ditlenek tytanu nie jest klasyfikowany jako substancja szkodliwa w postaci większych cząstek, jednak nanocząstki TiO₂ mogą wywołać wiele negatywnych efektów zdrowotnych. Narażenie inhalacyjne na nano-TiO₂ wywołuje stan zapalny, mogący prowadzić do zmian zwłóknieniowych i proliferacyjnych w płucach. Istnieje wiele prac na temat genotoksycznego działania TiO₂ na komórki ssaków i ludzi, szczególnie w przypadku nanocząstek. U szczurów narażanych inhalacyjnie na nanocząstki TiO₂ zaobserwowano powstawanie nowotworów. Nie ma jednak dowodów na wzrost dodatkowego ryzyka wystąpienia raka płuca lub zgonu związanego z tą chorobą u osób zawodowo narażonych na pył TiO₂. Istnieją badania potwierdzające negatywny wpływ nanocząstek TiO₂ na rozwój płodu i funkcje układu rozrodczego u zwierząt. Nanocząstki TiO2 znajdują coraz szersze zastosowanie i tym samym zwiększa się ryzyko narażenia na nanocząstki ditlenku tytanu w środowisku pracy. Wobec tak niepokojących danych dotyczących biologicznego działania nanocząstek TiO₂ należy zwrócić większą uwagę na narażenie i jego skutki dla zdrowia pracowników. Właściwości nanocząstek, ze względu na większą powierzchnię i reaktywność, różnią się istotnie od frakcji wdychalnej, dla której obowiązują obecnie normatywy higieniczne w Polsce. Med. Pr. 2014;65(5):651–663
Titanium dioxide occurs as particles of various sizes. Particles of up to 100 nm, corresponding to nanoparticles, and in the size range of 0.1–3 mm are the most frequently used. Titanium dioxide in a bulk form is not classified as dangerous substance, nevertheless nanoparticles may cause adverse health effects. Inhalation exposure to nano-TiO₂ causes pulmonary inflammation that may lead to fibrotic and proliferative changes in the lungs. Many studies confirm the genotoxic effect of TiO₂, especially in the form of nanoparticles, on mammal and human cells. In rats exposed to TiO₂-nanoparticles by inhalation the development of tumors has been observed. However, there is no evidence of additional lung cancer risk or mortality in workers exposed to TiO₂ dust. There are some studies demonstrating the adverse effect of TiO₂-nanoparticles on fetal development, as well as on reproduction of animals. TiO₂ nanoparticles find a still wider application and thus the risk of occupational exposure to this substance increases as well. Considering such alarming data on the biological activity of TiO₂ nanoparticles, more attention should be paid to occupational exposure and its health effects. Properties of the nanoparticles, due to their larger surface area and reactivity, differ significantly from the inhalable dust of TiO₂, for which the hygiene standards are mandatory in Poland. Med Pr 2014;65(5):651–663
Źródło:
Medycyna Pracy; 2014, 65, 5; 651-663
0465-5893
2353-1339
Pojawia się w:
Medycyna Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Nanomateriały – propozycje dopuszczalnych poziomów narażenia na świecie a normatywy higieniczne w Polsce
Nanomaterials – Proposals of occupational exposure limits in the world and hygiene standards in Poland
Autorzy:
Świdwińska-Gajewska, Anna M.
Czerczak, Sławomir
Powiązania:
https://bibliotekanauki.pl/articles/2166321.pdf
Data publikacji:
2014-11-05
Wydawca:
Instytut Medycyny Pracy im. prof. dra Jerzego Nofera w Łodzi
Tematy:
nanoobiekty
nanocząstki
narażenie zawodowe
najwyższe dopuszczalne stężenie
nanoobjects
nanoparticles
occupational exposure
maximum allowable concentration
Opis:
Obecnie nie ma prawnie obowiązujących normatywów dla substancji w postaci nanoobiektów w środowisku pracy. Istnieją różne podejścia do szacowania ryzyka i wyznaczania dopuszczalnych poziomów narażenia zawodowego. Celem niniejszego opracowania jest zestawienie dopuszczalnych poziomów narażenia w środowisku pracy zaproponowanych przez międzynarodowe organizacje i światowych ekspertów oraz podstaw i sposobów ich szacowania. W artykule przedstawiono propozycje ekspertów Krajowego Instytutu Zdrowia Publicznego i Środowiska w Holandii (RIVM), Organizacji Rozwoju Nowych Energii i Technologii Przemysłowych w Japonii (NEDO), Narodowego Instytutu Bezpieczeństwa i Higieny Pracy w USA (National Institute for Occupational Safety and Health - NIOSH), opracowania dotyczące poziomów dla nanorurek węglowych (Baytubes® i Nanocyl) Pauluhna i Luizi oraz Pochodne Poziomy Niepowodujące Zmian (derived no-effect levels - DNEL) zgodne z rozporządzeniem REACH, zaproponowane przez zespół ekspertów w ramach 7. Programu Ramowego Komisji Europejskiej pod kierunkiem prof. Vicki Stone (Engineered Nanoparticles: Review Health and Environmental Safety - ENRHES), i alternatywne szacowanie poziomów DNEL dla cząstek słabo rozpuszczalnych według Pauluhna. Biorąc pod uwagę obecnie obowiązujący sposób wyznaczania najwyższych dopuszczalnych stężeń w środowisku pracy w Polsce, można rozważyć, czy jest on adekwatny dla nanoobiektów. Być może warto przychylić się do wprowadzenia wartości odniesienia, podobnych do zaproponowanych przez RIVM, lub zdefiniowania nowej frakcji dla cząstek o wymiarach z zakresu 1-100 nm, uwzględniającej powierzchnię i aktywność cząstek, oraz wypracowania odmiennego sposobu szacowania współczynników modyfikacyjnych. Ważny, jeśli nie kluczowy pozostaje problem właściwej miary (stężenie liczbowe, powierzchniowe, liczbowy rozkład wymiarowy cząstek), a także metod i aparatury, która byłaby dostępna dla wszystkich pracodawców, żeby mogli odpowiedzialnie kontrolować ryzyko związane z narażeniem na nanomateriały w środowisku pracy. Med. Pr. 2013;64(6):829–845
Currently, there are no legally binding workplace exposure limits for substances in the form of nanoobjects. There are different approaches to risk assessment and determination of occupational exposure limits. The purpose of this article is to compare exposure levels in the work environment proposed by international organizations and world experts, as well as the assumptions and methods used for their estimation. This paper presents the proposals of the National Institute for Public Health and the Environment in the Netherlands (RIVM), the New Energy and Industrial Technology Development Organization in Japan (NEDO) and the National Institute for Occupational Safety and Health in the USA (NIOSH). The authors also discuss the reports on the levels for carbon nanotubes (Baytubes® and Nanocyl) proposed by Pauluhn and Luizi, the derived no-effect levels (DNEL) complying with the REACH Regulation, proposed by experts under the 7th Framework Programme of the European Commission, coordinated by Professor Vicki Stone (ENRHES), and alternative estimation levels for poorly soluble particles by Pauluhn. The issue was also raised whether the method of determining maximum admissible concentrations in the work environment, currently used in Poland, is adequate for nanoobjects. Moreover, the introduction of nanoreference values, as proposed by RIVM, the definition of a new fraction for particles of 1-100 nm, taking into account the surface area and activity of the particles, and an adequate estimation of uncertainty factors seem to be worth considering. Other important, if not key issues are the appropriate measurement (numerical concentration, surface concentration, particle size distribution), as well as the methodology and equipment accessibility to all employers responsible for a reliable risk assessment of exposure to nanoparticles in the work environment. Med Pr 2013;64(6):829–845
Źródło:
Medycyna Pracy; 2013, 64, 6; 829-845
0465-5893
2353-1339
Pojawia się w:
Medycyna Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Nanozłoto – działanie biologiczne i dopuszczalne poziomy narażenia zawodowego
Nanogold – Biological effects and occupational exposure levels
Autorzy:
Świdwińska-Gajewska, Anna M.
Czerczak, Sławomir
Powiązania:
https://bibliotekanauki.pl/articles/2164070.pdf
Data publikacji:
2017-06-27
Wydawca:
Instytut Medycyny Pracy im. prof. dra Jerzego Nofera w Łodzi
Tematy:
nanocząstki
narażenie zawodowe
nanoobiekty
toksyczność
nanozłoto
toksykokinetyka
nanoparticles
occupational exposure
nanoobjects
toxicity
nanogold
toxicokinetics
Opis:
Nanozłoto różni się właściwościami i działaniem biologicznym od złota metalicznego. Może ono znaleźć zastosowanie w wielu dziedzinach, takich jak medycyna, diagnostyka laboratoryjna czy elektronika. Z badań przeprowadzonych na zwierzętach laboratoryjnych wynika, że nanozłoto może się wchłaniać drogą oddechową i pokarmową. Może penetrować w głąb naskórka i skóry właściwej, ale nie ma dowodów, że wchłania się przez skórę. Nanoobiekty złota kumulują się głównie w wątrobie i śledzionie, ale mogą docierać do innych narządów wewnętrznych. Nanozłoto może pokonywać bariery krew–mózg i krew–łożysko. Toksykokinetyka nanozłota zależy od wielkości cząstek, kształtu oraz ładunku powierzchniowego. U zwierząt narażanych drogą inhalacyjną nanocząstki złota wywoływały niewielkie zmiany w płucach. Podawane drogą pokarmową nie powodowały negatywnych skutków zdrowotnych u gryzoni. U zwierząt, którym wstrzykiwano dootrzewnowo nanoobiekty złota, obserwowano zmiany w wątrobie i płucach. Wykazano genotoksyczność nanozłota w badaniach in vitro na komórkach, ale nie potwierdzono takiego działania u zwierząt. Nie zaobserwowano szkodliwego wpływu nanoobiektów na płód czy rozrodczość. Nie ma badań dotyczących działania rakotwórczego nanocząstek złota. Mechanizm działania toksycznego nanozłota może być związany z jego oddziaływaniem z białkami i DNA, co w efekcie prowadzi do indukowania stresu oksydacyjnego lub uszkodzeń materiału genetycznego. Wpływ nanostruktur na zdrowie człowieka nie jest jeszcze w pełni wyjaśniony. Osoby pracujące z nanomateriałami powinny zachować szczególną ostrożność i stosować istniejące zalecenia przy ocenie narażenia zawodowego na nanoobiekty. Przeprowadzona ocena ryzyka powinna stanowić podstawę do podejmowania odpowiednich działań ograniczających potencjalne narażenie na nanometale, w tym również nanozłoto. Med. Pr. 2017;68(4):545–556
Nanogold has different properties and biological activity compared to metallic gold. It can be applied in many fields, such as medicine, laboratory diagnostics and electronics. Studies on laboratory animals show that nanogold can be absorbed by inhalation and ingestion. It can penetrate deep into the epidermis and dermis, but there is no evidence that it is absorbed through the skin. Gold nanoobjects accumulate mainly in the liver and spleen, but they can also reach other internal organs. Nanogold can cross the blood–brain and blood–placenta barriers. Toxicokinetics of nanogold depends on the particle size, shape and surface charge. In animals exposure to gold nanoparticles via inhalation induces slight changes in the lungs. Exposure to nanogold by the oral route does not cause adverse health effects in rodents. In animals after injection of gold nanoobjects changes in the liver and lungs were observed. Nanogold induced genotoxic effects in cells, but not in animals. No adverse effects on the fetus or reproduction were found. There are no carcinogenicity studies on gold nanoparticles. The mechanism of toxicity may be related to the interaction of gold nanoobjects with proteins and DNA, and it leads to the induction of oxidative stress and genetic material damage. The impact of nanostructures on human health has not yet been fully understood. The person, who works with nanomaterials should exercise extreme caution and apply existing recommendations on the evaluation of nanoobjects exposure. The risk assessment should be the basis for taking appropriate measures to limit potential exposure to nanometals, including nanogold. Med Pr 2017;68(4):545–556
Źródło:
Medycyna Pracy; 2017, 68, 4; 545-556
0465-5893
2353-1339
Pojawia się w:
Medycyna Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Nanosrebro – dopuszczalne poziomy narażenia zawodowego
Nanosilver – Occupational exposure limits
Autorzy:
Świdwińska-Gajewska, Anna M.
Czerczak, Sławomir
Powiązania:
https://bibliotekanauki.pl/articles/2165388.pdf
Data publikacji:
2015-07-27
Wydawca:
Instytut Medycyny Pracy im. prof. dra Jerzego Nofera w Łodzi
Tematy:
nanocząstki
narażenie zawodowe
srebro
nanoobiekty
NDS
nanosrebro
nanoparticles
occupational exposure
silver
nanoobjects
MAC-TWA
nanosilver
Opis:
Nanosrebro historycznie było określane mianem srebra koloidalnego i składa się z cząstek w rozmiarze poniżej 100 nm. Nanocząstki srebra są wykorzystywane w wielu technologiach do tworzenia szerokiego zakresu produktów. Dzięki właściwościom antybakteryjnym znajdują zastosowanie m.in. w wyrobach medycznych (środki opatrunkowe), tekstyliach (odzież dla sportowców, skarpety), tworzywach sztucznych czy materiałach budowlanych (farby). Srebro koloidalne przez wielu uważane jest za idealny środek w walce z drobnoustrojami chorobotwórczymi, który w przeciwieństwie do antybiotyków nie wywołuje skutków ubocznych. Wyniki badań toksykologicznych pokazują jednak, że nanosrebro nie jest obojętne dla organizmu. W narażeniu inhalacyjnym nanocząstki srebra działają szkodliwie głównie na wątrobę i płuca u szczurów. Za toksyczność nanocząstek w dużej mierze odpowiedzialny jest stres oksydacyjny wywołany przez reaktywne formy tlenu, co przyczynia się do cyto- i genotoksycznego działania nanosrebra. U podłoża molekularnego mechanizmu toksyczności nanosrebra leży aktywność powierzchni nanocząstek, która łatwo ulega utlenieniu. Prowadzi to do uwalniania jonów srebra o znanym działaniu toksycznym. Narażenie zawodowe na srebro nanocząstkowe może występować w procesach jego wytwarzania, formulacji, a także stosowania, szczególnie podczas rozpylania. W Polsce, podobnie jak na świecie, nie obowiązują osobne normatywy higieniczne dla nanomateriałów. W niniejszym opracowaniu podjęto próbę oszacowania wartości najwyższego dopuszczalnego stężenia (NDS) dla srebra – frakcji nanoobiektów, która wyniosła: 0,01 mg/m³. Autorzy stoją na stanowisku, że obecnie obowiązująca wartość NDS dla frakcji wdychalnej srebra metalicznego (0,05 mg/m³) nie zapewnia wystarczającej ochrony przed szkodliwym działaniem srebra w postaci nanoobiektów. Med. Pr. 2015;66(3):429–442
Historically, nanosilver has been known as colloidal silver composed of particles with a size below 100 nm. Silver nanoparticles are used in many technologies, creating a wide range of products. Due to antibacterial properties nanosilver is used, among others, in medical devices (wound dressings), textiles (sport clothes, socks), plastics and building materials (paints). Colloidal silver is considered by many as an ideal agent in the fight against pathogenic microorganisms, unlike antibiotics, without side effects. However, in light of toxicological research, nanosilver is not inert to the body. The inhalation of silver nanoparticles have an adverse effect mainly on the liver and lung of rats. The oxidative stress caused by reactive oxygen species is responsible for the toxicity of nanoparticles, contributing to cytotoxic and genotoxic effects. The activity of the readily oxidized nanosilver surface underlies the molecular mechanism of toxicity. This leads to the release of silver ions, a known harmful agent. Occupational exposure to silver nanoparticles may occur in the process of its manufacture, formulation and also usage during spraying, in particular. In Poland, as well as in other countries of the world, there is no separate hygiene standards applicable to nanomaterials. The present study attempts to estimate the value of MAC-TWA (maximum admissible concentration – the time-weighted average) for silver – a nano-objects fraction, which amounted to 0.01 mg/m³. The authors are of the opinion that the current value of the MAC-TWA for silver metallic – inhalable fraction (0.05 mg/m³) does not provide sufficient protection against the harmful effects of silver in the form of nano-objects. Med Pr 2015;66(3):429–442
Źródło:
Medycyna Pracy; 2015, 66, 3; 429-442
0465-5893
2353-1339
Pojawia się w:
Medycyna Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Fluorouracyl i doksorubicyna – kardiotoksyczne cytostatyki w miejscu pracy
Fluorouracil and doxorubicin – cardiotoxic cytostatics in the workplace
Autorzy:
Kupczewska-Dobecka, Małgorzata
Czerczak, Sławomir
Powiązania:
https://bibliotekanauki.pl/articles/2085523.pdf
Data publikacji:
2020-05-15
Wydawca:
Instytut Medycyny Pracy im. prof. dra Jerzego Nofera w Łodzi
Tematy:
narażenie zawodowe
cytostatyki
toksyczność
fluorouracyl
doksorubicyna
dyrektywa CMD
occupational exposure
cytostatics
toxicity
fluorouracil
Doxorubicin
CMD directive
Opis:
Celem pracy jest analiza potencjalnych zagrożeń zawodowych związanych z fluorouracylem (FU) i doksorubicyną (DOX). Przegląd piśmiennictwa przeprowadzono, korzystając z faktograficznych i bibliograficznych baz naukowych obejmujących czasopisma recenzowane oraz z tzw. szarej literatury. W Polsce od 2014 r. trwa proces ustalania dopuszczalnych poziomów narażenia zawodowego dla wybranych leków przeciwnowotworowych, a podstawą do wyznaczenia najwyższych dopuszczalnych stężeń jest zwykle stężenie ekwiwalentne 0,1% najmniejszej znalezionej w piśmiennictwie dawki terapeutycznej. Stosuje się także współczynniki niepewności, które uwzględniają: mechanizm działania cytostatyku, dynamikę metabolizmu, ocenę klasyfikacji i oznakowania pod kątem właściwości rakotwórczych, mutagennych oraz genotoksycznych, szkodliwego działania na rozrodczość, działania toksycznego na narządy, zdolność kumulacji cytostatyku, ocenę działania łącznego z innymi cytostatykami, postać fizykochemiczną oraz kompletność danych. Jeśli jest to możliwe, szacuje się ryzyko wystąpienia dodatkowego nowotworu. W Unii Europejskiej kluczowym rozwiązaniem prawnym dotyczącym zdrowia publicznego, ukierunkowanym na problematykę nowotworów zawodowych, jest dyrektywa CMD (carcinogens and mutagens directive). Omawiane cytostatyki wykazują działanie genotoksyczne i są zaliczone do grupy leków niebezpiecznych. Ich poważnym działaniem ubocznym jest zagrażające życiu uszkodzenie serca. W przeprowadzonej analizie wykazano, że włączenie leków niebezpiecznych do wykazu substancji podlegających wymaganiom dyrektywy CMD jest całkowicie uzasadnione. Procedura klasyfikacji i oznakowania cytostatyków powinna zostać zharmonizowana w całej Unii Europejskiej: zapewniłoby to rzetelne i wiarygodne zarządzanie ryzykiem.
The aim of the study is to analyze the potential occupational hazards of fluorouracil (FU) and doxorubicin (DOX). The literature review was based on factual and bibliographic scientific databases of the available peer-reviewed journals and the so-called gray literature. In Poland, the process of determining the acceptable levels of occupational exposure for selected anticancer drugs has been underway since 2014, and the basis for determining the maximum allowable concentration values is usually the concentration equivalent to 0.1% of the lowest therapeutic dose found in the literature. In addition, uncertainty coefficients are used, which take into account the mechanism of action of the cytostatics, the dynamics of metabolism, the assessment of classification and labeling for carcinogenic, mutagenic, genotoxic, reproductive toxicity, organ toxicity, the ability to accumulate cytostatics, the assessment of cumulative effects with other cytostatics, the physicochemical form and data completeness. Where possible, the risk of additional cancer is estimated. Directive 2004/37/EC on the protection of workers from the risks related to exposure to carcinogens at work (the carcinogens and mutagens directive ‒ CMD) is a key legal solution in the field of public health in the European Union, focused on the issue of occupational cancer. These cytostatics, FU and DOX, are genotoxic and are classified as hazardous. Life-threatening heart damage is a serious side effect of both FU and DOX. The analysis has shown that the inclusion of dangerous drugs in the list of substances subject to the requirements of the CMD is completely justified. The cytostatics classification and labeling procedure should be harmonized throughout the European Union, which will ensure a reliable and credible risk management in this area.
Źródło:
Medycyna Pracy; 2020, 71, 3; 363-373
0465-5893
2353-1339
Pojawia się w:
Medycyna Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Bezpomiarowa ocena narażenia zawodowego na substancje chemiczne - nowe wyzwanie dla pracodawców
Predictive models for the assessment of occupational exposure to chemicals: A new challenge for employers
Autorzy:
Gromiec, Jan P.
Kupczewska-Dobecka, Małgorzata
Jankowska, Agnieszka
Czerczak, Sławomir
Powiązania:
https://bibliotekanauki.pl/articles/2166311.pdf
Data publikacji:
2014-11-05
Wydawca:
Instytut Medycyny Pracy im. prof. dra Jerzego Nofera w Łodzi
Tematy:
modele predykcyjne
narażenie zawodowe
EASE
ECETOC TRA
Stoffenmanager
EKMG-Expo-Tool
predictive models
occupational exposure
ease
Opis:
W Polsce nie ma obecnie wiarygodnej, uproszczonej, bezpomiarowej metody oceny narażenia na związki chemiczne, natomiast w niektórych państwach podjęto próby opracowania i wprowadzenia takich metod. Celem pracy jest przegląd wybranych modeli bezpomiarowego prognozowania narażenia zawodowego i związanego z nim ryzyka oraz ocena ich przydatności do szacowania inhalacyjnego narażenia zawodowego, zarówno dla potrzeb oceny zgodności warunków pracy z normatywami higienicznymi, jak i spełnienia wymagań rozporządzenia w sprawie rejestracji i oceny chemikaliów (tzw. REACH). Na podstawie danych literaturowych przeprowadzono przegląd i ocenę modeli: HSE COSHH Essentials, EASE, ECETOC TRA, Stoffenmanager oraz EMKG-Expo-Tool. Zapoznano się z zasadami funkcjonowania modelu i zakresem informacji dotyczących procesu technologicznego oraz innymi danymi, które są wymagane jako dane wejściowe do modelu, oraz z dostępnymi wynikami badań porównawczych, prowadzonych w celu weryfikacji modeli. Na podstawie przeprowadzonej oceny wybranych modeli można stwierdzić, że mogą być one stosowane do wstępnej oceny narażenia inhalacyjnego w zakładach pracy. Omówione modele na ogół dają jako wynik przeszacowane narażenie, a obliczone z ich wykorzystaniem poziomy narażenia należy rozpatrywać jako tzw. racjonalny najgorszy przypadek, niezbędny do prawidłowego doboru środków prewencji. Dostępna w modelach liczba kategorii procesowych i wzorcowych scenariuszy narażenia zawodowego jest obecnie stosunkowo niewielka w porównaniu z sytuacjami, które występują w przemyśle. Niezbędna jest więc dalsza walidacja programów oceny narażenia i/lub ryzyka za pomocą badań terenowych. Modele te mogą być przydatne do wstępnej oceny narażenia inhalacyjnego i doboru środków prewencji, jednak warunkiem ich stosowania w małych i średnich przedsiębiorstwach w Polsce jest ich dostępność w polskiej wersji oraz intensywne szkolenia przyszłych użytkowników w zakresie ich stosowania. Med. Pr. 2013;64(5):699–716
Employers are obliged to carry out and document the risk associated with the use of chemical substances. The best but the most expensive method is to measure workplace concentrations of chemicals. At present no "measureless" method for risk assessment is available in Poland, but predictive models for such assessments have been developed in some countries. The purpose of this work is to review and evaluate the applicability of selected predictive methods for assessing occupational inhalation exposure and related risk to check the compliance with Occupational Exposure Limits (OELs), as well as the compliance with REACH obligations. Based on the literature data HSE COSHH Essentials, EASE, ECETOC TRA, Stoffenmanager, and EMKG-Expo-Tool were evaluated. The data on validation of predictive models were also examined. It seems that predictive models may be used as a useful method for Tier 1 assessment of occupational exposure by inhalation. Since the levels of exposure are frequently overestimated, they should be considered as "rational worst cases" for selection of proper control measures. Bearing in mind that the number of available exposure scenarios and PROC categories is limited, further validation by field surveys is highly recommended. Predictive models may serve as a good tool for preliminary risk assessment and selection of the most appropriate risk control measures in Polish small and medium size enterprises (SMEs) providing that they are available in the Polish language. This also requires an extensive training of their future users. Med Pr 2013;64(5):699–716
Źródło:
Medycyna Pracy; 2013, 64, 5; 699-716
0465-5893
2353-1339
Pojawia się w:
Medycyna Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
OELs derivation in Poland and in the former Eastern Bloc with reference to approaches and practices applied in the EU
Ustalanie dopuszczalnych poziomów narażenia zawodowego w Polsce i państwach dawnego bloku wschodniego w świetle podejścia i rozwiązań UE
Autorzy:
Soćko, Renata
Czerczak, Sławomir
Kupczewska-Dobecka, Małgorzata
Powiązania:
https://bibliotekanauki.pl/articles/2165385.pdf
Data publikacji:
2015-07-02
Wydawca:
Instytut Medycyny Pracy im. prof. dra Jerzego Nofera w Łodzi
Tematy:
Polska
UE
Europa Wschodnia
narażenie zawodowe
NDS
NDSCh
Polska
Eastern Europe
occupational exposure
MAC-TWA
MAC-STEL
Opis:
Based on the literature, current legislation and the European Union (EU) directives, the rules to protect the health of workers in Poland and the countries of the former Eastern Bloc were analyzed. Since 2002, the activities in the field of hygiene standards in the countries of the former Eastern Bloc have been correlated with the EU policy. The functioning of the system of maximum admissible concentrations (MAC) having been implemented in Poland for many years before the accession to the EU, has provided for a relatively quick adjustment of Polish regulations on chemicals to the relevant European law. The Polish list includes 543 substances. In the former Eastern Bloc countries, intensification of work after joining the EU has caused the lists in those countries to contain from 285 substances in Slovakia to 780 in Lithuania. Currently, all substances included in the EU lists (up to and including the 3rd list of occupational exposure limit values of the Directive 2009/161/EC) have been governed by the Polish, Lithuanian, Czech, Latvian and Hungarian law. In Estonia and Slovakia the provisions of the Directive 2006/15/EC establishing the second list of occupational exposure limits have been implemented. Individual national lists contain much more chemicals than the EU list containing currently 122 substances. The legislative process in the EU is slow, and that is why the national law is important and necessary due to the local needs in selected areas. It is necessary to correlate the activities in the field of determining regional occupational exposure limit (OEL) values in the countries of the Eastern Bloc and the EU. Med Pr 2015;66(3):383–392
W oparciu o dane literaturowe, aktualne akty prawne i dyrektywy Unii Europejskiej (UE) przedstawiono zasady ochrony zdrowia pracowników w Polsce i państwach dawnego bloku wschodniego. Od 2002 r. zadania w obszarze normatywów higienicznych w tych państwach są skorelowane z polityką UE. Funkcjonowanie w Polsce systemu ustalania wartości najwyższych dopuszczalnych stężeń (NDS) przez wiele lat przed wejściem do UE pozwoliło szybko dostosować polskie przepisy dotyczące chemikaliów do prawa europejskiego. Obecnie w polskim wykazie dopuszczalnych poziomów narażenia zawodowego znajdują się 543 substancje. W państwach byłego bloku wschodniego zintensyfikowanie prac nad ustaleniem tych poziomów po wejściu do UE spowodowało, że w wykazach tych państw znajduje się od 285 substancji (na Słowacji) do 780 (na Litwie). Obecnie wszystkie substancje w wykazach dopuszczalnych poziomów narażenia zawodowego w UE (do trzeciego wykazu wartości narażenia zawodowego opublikowanego w dyrektywie 2009161/EC włącznie) zostały wprowadzone do prawa polskiego, litewskiego, czeskiego, łotewskiego i węgierskiego. W innych państwach bloku wschodniego – Estonii i Słowacji – wdrożono przepisy dyrektywy 2006/15/WE ustanawiającej drugi wykaz wartości narażenia zawodowego w UE. Indywidualne wykazy krajowe zawierają znacznie więcej substancji niż wykaz UE (w którym są obecnie 122 substancje). Proces legislacyjny w UE jest powolny, dlatego wartości krajowe są ważne i potrzebne ze względu na lokalne potrzeby w wybranych dziedzinach i konieczność samodzielnych rozwiązań problemów. Niezbędne jest skorelowanie działań w zakresie ustalania regionalnych wartości dopuszczalnego narażenia zawodowego (occupational exposure limit – OEL) w krajach dawnego bloku wschodniego i w UE oraz wymiana informacji wynikających z przetworzenia olbrzymiej ilości danych literaturowych. Med. Pr. 2015;66(3):383–392
Źródło:
Medycyna Pracy; 2015, 66, 3; 383-392
0465-5893
2353-1339
Pojawia się w:
Medycyna Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Nanorurki węglowe – charakterystyka substancji, działanie biologiczne i dopuszczalne poziomy narażenia zawodowego
Carbon nanotubes – Characteristic of the substance, biological effects and occupational exposure levels
Autorzy:
Świdwińska-Gajewska, Anna M.
Czerczak, Sławomir
Powiązania:
https://bibliotekanauki.pl/articles/2164120.pdf
Data publikacji:
2017-03-24
Wydawca:
Instytut Medycyny Pracy im. prof. dra Jerzego Nofera w Łodzi
Tematy:
narażenie zawodowe
nanoobiekty
toksyczność
nanorurki węglowe
nanowłókna
narażenie inhalacyjne
occupational exposure
nanoobjects
toxicity
carbon nanotubes
nanofibers
inhalation
Opis:
Nanorurki węglowe (carbon nanotubes – CNT) są grupą nanoobiektów zróżnicowaną pod względem budowy, rozmiaru (długości i średnicy), kształtu oraz własności. Dzięki wielu interesującym właściwościom znajdują szerokie zastosowanie w różnych dziedzinach. Rosnące zainteresowanie tymi strukturami pociąga za sobą zwiększenie liczby osób pracujących w narażeniu na CNT. Ekspozycja zawodowa na nanorurki może występować zarówno w laboratoriach prowadzących nad nimi badania, jak i w zakładach produkujących CNT lub zawierające je nanokompozyty. Poziomy stężeń liczbowych CNT w pobliżu źródła ich emisji mogą sięgać wielkości rzędu 10⁷ cząstek/cm³. Wartości te jednak znacznie się obniżają po zastosowaniu odpowiedniej wentylacji. Z badań na zwierzętach wynika, że główną drogą narażenia jest inhalacja. Nie ma dowodów na wchłanianie przez skórę. Nanorurki węglowe podawane drogą pokarmową w znacznym stopniu są wydalane z kałem. Nie opisano metabolizmu nanorurek węglowych. W badaniach inhalacyjnych na zwierzętach CNT wywoływały głównie stan zapalny, na skutek stresu oksydacyjnego, prowadząc przede wszystkim do zmian w płucach. U zwierząt narażanych drogą dermalną główny efekt to stres oksydacyjny wywołujący miejscowy stan zapalny. Najmniej objawów toksyczności zaobserwowano u zwierząt eksponowanych drogą pokarmową. Nanorurki węglowe nie indukowały mutacji w testach bakteryjnych, jednak działały genotoksycznie w wielu testach prowadzonych zarówno na komórkach in vitro, jak również u narażanych myszy in vivo. Działanie embriotoksyczne CNT zależy głównie od ich modyfikacji, natomiast rakotwórcze – od rozmiaru i sztywności. Zaproponowane przez światowych ekspertów wartości dopuszczalnych poziomów narażenia zawodowego dla CNT mieszczą się w przedziale 1–80 μg/m³. Różnorodność skutków działania CNT skłania do tego, żeby każdy rodzaj nanorurek był traktowany jak oddzielna substancja wymagająca osobnego szacowania normatywu higienicznego. Med. Pr. 2017;68(2):259–276
Carbon nanotubes (CNTs) are a diverse group of nano-objects in terms of structure, size (length, diameter), shape and characteristics. The growing interest in these structures is due to the increasing number of people working in exposure to CNTs. Occupational exposure to carbon nanotubes may occur in research laboratories, as well as in plants producing CNTs and their nanocomposites. Carbon nanotubes concentration at the emission source may reach 10⁷ particles/cm³. These values, however, are considerably reduced after the application of adequate ventilation. Animal studies suggest that the main route of exposure is inhalation. Carbon nanotubes administered orally are largely excreted in the feces. In animals exposed by inhalation, CNTs caused mainly inflammation, as a result of oxidative stress, leading above all to changes in the lungs. The main effect of animal dermal exposure is oxidative stress causing local inflammation. In animals exposed by ingestion the mild or no toxicity was observed. Carbon nanotubes did not induce mutations in the bacterial tests, but they were genotoxic in a series of tests on cells in vitro, as well as in exposed mice in vivo. Embryotoxicity of nanotubes depends mainly on their modifications and carcinogenicity – primarily on the CNT size and its rigidity. Occupational exposure limits for CNTs proposed by world experts fall within the range of 1–80 μg/m³. The different effects of various kinds of CNT, leads to the conclusion that each type of nanotube should be treated as a separate substance with individual estimation of hygienic normative. Med Pr 2017;68(2):259–276
Źródło:
Medycyna Pracy; 2017, 68, 2; 259-276
0465-5893
2353-1339
Pojawia się w:
Medycyna Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Czynniki rakotwórcze i mutagenne w środowisku pracy w Polsce w latach 2011–2012
Carcinogenic and mutagenic agents in the workplace, Poland, 2011–2012
Autorzy:
Pałaszewska-Tkacz, Anna
Czerczak, Sławomir
Konieczko, Katarzyna
Powiązania:
https://bibliotekanauki.pl/articles/2165415.pdf
Data publikacji:
2015-03-09
Wydawca:
Instytut Medycyny Pracy im. prof. dra Jerzego Nofera w Łodzi
Tematy:
rejestr
środowisko pracy
czynniki rakotwórcze
czynniki mutagenne
narażenie zawodowe
nowotwory
register
occupational environment
carcinogens
mutagens
occupational exposure
Neoplasm
Opis:
Wstęp: Przedmiotem badań była analiza struktury występowania czynników chemicznych i pyłowych o działaniu rakotwórczym lub mutagennym w zakładach pracy w Polsce w latach 2011–2012, w tym liczby osób zawodowo narażonych na te czynniki, na podstawie danych zgromadzonych w „Centralnym rejestrze danych o narażeniu na substancje chemiczne, ich mieszaniny, czynniki lub procesy technologiczne o działaniu rakotwórczym lub mutagennym”, prowadzonym przez Instytut Medycyny Pracy im. prof. J. Nofera w Łodzi. Przedstawiono cele, zakres i metodykę prowadzenia rejestru. Materiał i metody: Dane dotyczące zawodowego narażenia na substancje chemiczne i procesy technologiczne o działaniu rakotwórczym lub mutagennym w latach 2011–2012 nadesłane przez pracodawców poddano jakościowej i ilościowej analizie. Wyniki: W latach 2011–2012 pracodawcy z ponad 2600 zakładów pracy zgłaszali rocznie informację o występowaniu ok. 300 różnych substancji rakotwórczych/ /mutagennych. Najbardziej rozpowszechnione były benzen, jedna z niespecyfikowanych benzyn, związki chromu(VI), azbest, tritlenek chromu, tlenek etylenu i benzo[a]piren. Najwięcej pracowników było narażonych na poszczególne wielopierścieniowe węglowodory aromatyczne (WWA) i benzen. Istotnym kancerogenem zawodowym, umieszczonym w wykazie procesów technologicznych zawartym w ww. rejestrze, były pyły drewna twardego, na które narażonych było ok. 11 tys. osób rocznie w ponad 650 zakładach pracy. Wnioski: Nowelizacja rozporządzenia dotyczącego narażenia zawodowego na czynniki rakotwórcze nie wpłynęła istotnie na strukturę narażenia w Polsce, ale umożliwiła określenie rzeczywistej liczby osób narażonych ogółem. Med. Pr. 2015;66(1):29–38
Background: The objective of the study was the analysis of structure of carcinogenic or mutagenic chemical substances and dusts occurring in Polish enterprises, 2011–2012, including the number of exposed employees reported to the “Central register of data on exposure to carcinogenic or mutagenic chemical substances, mixtures, agents or technological processes”, Nofer Institute of Occupational Medicine, Łódź. In the paper the aims, range and methodology of data collecting by the Central Register are presented. Material and Methods: Qualitative and quantitative analyses of the data on occupational exposure to carcinogenic substances and technological processes reported by employers were carried out. Results: In 2011–2012 approximately 2600 plants reported more than 300 carcinogenic or mutagenic chemical substances annually. The most common occupational chemical carcinogens/mutagens were: benzene, one of the unspecified gasoline, chromium(VI) compounds, asbestos, chromium(VI) trioxide, ethylene oxide and benzo[a]pyrene. The highest number of employees was exposed to particular polycyclic aromatic hydrocarbons (PAHs). Hardwood dust was the major occupational carcinogen listed in the technological processes inventory with approximately 11 000 employees exposed in about 650 enterprises annually. Conclusions: The amended legislation concerning occupational exposure to carcinogens has not significantly influenced the exposure structure in Poland. Nevertheless it permited to determine the actual total number of the occupationally exposed to carcinogens. Med Pr 2015;66(1):29–38
Źródło:
Medycyna Pracy; 2015, 66, 1; 29-38
0465-5893
2353-1339
Pojawia się w:
Medycyna Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Nanocząstki ditlenku tytanu – dopuszczalne poziomy narażenia zawodowego
Titanium dioxide nanoparticles: Occupational exposure limits
Autorzy:
Świdwińska-Gajewska, Anna M.
Czerczak, Sławomir
Powiązania:
https://bibliotekanauki.pl/articles/2166219.pdf
Data publikacji:
2014-10-30
Wydawca:
Instytut Medycyny Pracy im. prof. dra Jerzego Nofera w Łodzi
Tematy:
ditlenek tytanu
nanoobiekty
nanocząstki
narażenie zawodowe
najwyższe dopuszczalne stężenie
titanium dioxide
nanoobjects
nanoparticles
occupational exposure
maximum admissible concentration
Opis:
Ditlenek tytanu (TiO₂) jest produkowany w Polsce jako substancja wielkotonażowa. Wykorzystywany jest przede wszystkim jako pigment do farb i lakierów, tworzyw sztucznych oraz papieru, ale także jako dodatek do żywności i farmaceutyków. Coraz szersze zastosowanie znajdują nanocząstki TiO₂ – głównie w kosmetykach, tkaninach i tworzywach sztucznych – jako bloker promieniowania ultrafioletowego. Zwiększa się tym samym ryzyko narażenia pracowników na nanocząstki ditlenku tytanu w środowisku pracy. Ze względu na brak odpowiednich metod pomiarowych oraz wyodrębnionej frakcji nanoobiektów, dla których mogą być opracowywane normatywy higieniczne, nie ustalono najwyższych dopuszczalnych stężeń w powietrzu środowiska pracy dla cząstek < 100 nm, które w głównej mierze są odpowiedzialne za potencjalnie szkodliwe działanie ditlenku tytanu. Eksperci Narodowego Instytutu Bezpieczeństwa i Higieny Pracy (National Institute for Occupational Safety and Health – NIOSH) zaproponowali dopuszczalny poziom narażenia dla nanocząstek ditlenku tytanu w wysokości 0,3 mg/m³, a eksperci Organizacji Rozwoju Nowych Energii i Technologii Przemysłowych (New Energy and Industrial Technology Development Organization – NEDO) – 0,6 mg/m³. Autorzy niniejszego opracowania na podstawie dostępnych danych i w oparciu o obowiązujące metody wyznaczania wartości normatywów higienicznych w Polsce oszacowali, że wartość najwyższego dopuszczalnego stężenia (NDS) w powietrzu środowiska pracy dla nanocząstek TiO₂ może wynosić 0,3 mg/m³. Med. Pr. 2014;65(3):407–418
Titanium dioxide (TiO₂) is produced in Poland as a high production volume chemical (HPVC). It is used mainly as a pigment for paints and coatings, plastics, paper, and also as additives to food and pharmaceuticals. Titanium dioxide nanoparticles are increasingly applied in cosmetics, textiles and plastics as the ultraviolet light blocker. This contributes to a growing occupational exposure to TiO₂ nanoparticles. Nanoparticles are potentially responsible for the most adverse effects of titanium dioxide. Due to the absence of separate fraction of nanoobjects and appropriate measurement methods the maximum admissible concentrations (MAC) for particles < 100 nm and nano-TiO₂ cannot be established. In the world there are 2 proposals of occupational exposure levels for titanium dioxide nanoparticles: 0.3 mg/m³, proposed by the National Institute for Occupational Safety and Health (NIOSH), and 0.6 mg/m³, proposed by experts of the New Energy and Industrial Technology Development Organization (NEDO). The authors of this article, based on the available data and existing methods for hygiene standards binding in Poland, concluded that the MAC value of 0.3 mg/m³ for nanoparticles TiO₂ in the workplace air can be accepted. Med Pr 2014;65(3):407–418
Źródło:
Medycyna Pracy; 2014, 65, 3; 407-418
0465-5893
2353-1339
Pojawia się w:
Medycyna Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Substancje chemiczne i procesy technologiczne o działaniu rakotwórczym lub mutagennym w środowisku pracy w Polsce w latach 2013–2017
Carcinogenic or mutagenic chemical substances and technological processes in the workplace in Poland in 2013–2017
Autorzy:
Niepsuj, Agnieszka
Czerczak, Sławomir
Konieczko, Katarzyna
Powiązania:
https://bibliotekanauki.pl/articles/2085473.pdf
Data publikacji:
2020-03-30
Wydawca:
Instytut Medycyny Pracy im. prof. dra Jerzego Nofera w Łodzi
Tematy:
narażenie zawodowe
rejestr
środowisko pracy
czynniki rakotwórcze
czynniki mutagenne
rozkład przestrzenny
occupational exposure
register
work environment
carcinogens
mutagens
spatial distribution
Opis:
WstępCelem pracy było przedstawienie danych o narażeniu zawodowym na czynniki rakotwórcze i mutagenne w Polsce w latach 2013–2017 na podstawie informacji nadesłanych do „Centralnego rejestru danych o narażeniu na substancje chemiczne, ich mieszaniny, czynniki lub procesy technologiczne o działaniu rakotwórczym lub mutagennym”, prowadzonego przez Instytut Medycyny Pracy im. prof. J. Nofera w Łodzi. Omówiono także podstawy prawne i cel prowadzenia rejestru oraz zakres zbieranych danych.Materiał i metodyPrzeanalizowano dane dotyczące narażenia zawodowego na rakotwórcze i mutagenne substancje chemiczne oraz ich mieszaniny i procesy technologiczne, które polscy pracodawcy przesłali do centralnego rejestru w latach 2013–2017. Dane zestawiono w różnych konfiguracjach i przedstawiono w formie rozkładów przestrzennych narażenia oraz występowania wybranych kancerogenów i mutagenów zawodowych.WynikiOd 2013 r. liczba substancji chemicznych zgłaszanych do centralnego rejestru systematycznie rosła. W 2017 r. zgłoszono 368 substancji, co stanowi wzrost o 21,1% względem 2013 r. Zwiększyła się również (do ponad 4000 zakładów w 2017 r.) liczba zakładów dokonujących zgłoszeń. Najbardziej rozpowszechnionymi czynnikami chemicznymi w omawianych latach były formaldehyd, poszczególne wielopierścieniowe węglowodory aromatyczne, benzen i związki chromu(VI). Spośród procesów technologicznych najwięcej zakładów zgłosiło prace w narażeniu na pył drewna twardego (corocznie ok. 800 zakładów i od ponad 10 tys. do prawie 15 tys. narażonych pracowników).WnioskiDo celów związanych z prowadzeniem rejestrów w zakładach pracy konieczne jest prawne zdefiniowanie pojęcia narażenia i jego ilościowe określenie, aby uniknąć wątpliwości pracodawców i służb nadzoru co do liczby osób narażonych w zakładzie pracy. Mapy rozkładu przestrzennego narażenia są przejrzystym i prostym w odbiorze sposobem przedstawienia danych o narażeniu na kancerogeny i mutageny zawodowe.
BackgroundThe aim of this paper was to present data on occupational exposure to carcinogens and mutagens in Poland in 2013–2017, based on information sent to the “Central Register of Data on Exposure to Carcinogenic or Mutagenic Chemical Substances, Mixtures, Agents or Technological Processes,” kept by the Nofer Institute of Occupational Medicine, Łódź, Poland. The legal bases, purpose and scope of data collection were also discussed.Material and MethodsData on occupational exposure to carcinogenic and mutagenic substances, mixtures and technological processes, submitted to the Central Register by Polish employers in 2013– 2017, were analyzed. The data were shown in various configurations and presented in the form of spatial distribution of the exposure to and occurrence of selected occupational carcinogens and mutagens.ResultsThe number of chemical substances reported to the Central Register in the reference period had increased gradually since 2013. In 2017, 368 substances were reported, i.e., an increase of 21.1% compared to 2013. Also, the number of reporting enterprises increased (to over 4000 enterprises in 2017). The most common chemical agents in the reference years were formaldehyde, particular polycyclic aromatic hydrocarbons (PAH), benzene and chromium( VI) compounds. Among the technological processes, most of the plants reported works in exposure to hardwood dust (about 800 plants and over 10 000 to almost 15 000 exposed workers).ConclusionsIt is necessary to legally define the term “exposure” and its quantification so that there would be no doubts for employers and supervision services about the number of people exposed in the workplace. Exposure spatial distribution maps are a transparent and easy-to-understand way of presenting data on exposure to occupational carcinogens and mutagens.
Źródło:
Medycyna Pracy; 2020, 71, 2; 187-203
0465-5893
2353-1339
Pojawia się w:
Medycyna Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Aspekty higieniczne i prawne oceny narażenia zawodowego na cytostatyki
Hygiene and legal aspects of occupational exposure assessment to cytostatics
Autorzy:
Kupczewska-Dobecka, Małgorzata
Pałaszewska-Tkacz, Anna
Czerczak, Sławomir
Konieczko, Katarzyna
Powiązania:
https://bibliotekanauki.pl/articles/2162583.pdf
Data publikacji:
2017-12-05
Wydawca:
Instytut Medycyny Pracy im. prof. dra Jerzego Nofera w Łodzi
Tematy:
narażenie zawodowe
czynnik rakotwórczy
czynnik mutagenny
zdrowie pracowników
skutki zdrowotne
cytostatyk
occupational exposure
carcinogen
mutagen
occupational health
health effects
cytostatic
Opis:
W publikacji przeanalizowano obowiązki pracodawców w zakresie oceny narażenia zawodowego na cytostatyki w miejscu pracy w świetle obowiązujących regulacji prawnych. Leki cytostatyczne mogą stanowić zagrożenie dla zdrowia i życia pracowników sprawujących opiekę nad chorym onkologicznym (tj. farmaceutów, lekarzy, pielęgniarek i pozostałego personelu pomocniczego) oraz pracowników lecznic weterynaryjnych. Dużą skalę narażenia zawodowego na cytostatyki w Polsce potwierdzają dane gromadzone w Centralnym Rejestrze Danych o Narażeniu na Substancje Chemiczne, Ich Mieszaniny, Czynniki lub Procesy Technologiczne o Działaniu Rakotwórczym lub Mutagennym, prowadzonym przez Instytut Medycyny Pracy im. prof. J. Nofera w Łodzi. Problem oceny ryzyka zawodowego związanego z narażeniem na cytostatyki budzi wiele wątpliwości. Przepisy regulujące w Polsce kwestie ochrony zdrowia pracowników zawodowo narażonych na leki cytostatyczne wywodzą się z różnych obszarów prawa i nie są jednoznaczne ani spójne (szczególnie w kwestii klasyfikacji cytostatyków pod kątem stwarzanych zagrożeń, ich oznakowania i sporządzania dla nich kart charakterystyki). Nie są ustalone prawnie wartości najwyższych dopuszczalnych stężeń substancji czynnych leków przeciwnowotworowych w środowisku pracy oraz brakuje metod ich monitorowania w strefie oddychania pracownika i w materiale biologicznym. Uniemożliwia to przeprowadzanie prawidłowej oceny narażenia zawodowego, której wyniki są podstawą do podejmowania przez pracodawcę odpowiednich działań profilaktycznych. W pracy omówiono skutki nowelizacji prawa europejskiego w obszarze chemikaliów dla pracodawców, którzy odpowiadają za właściwą ochronę zdrowia i życia pracowników zatrudnionych w narażeniu na leki cytostatyczne. Przedstawiono także propozycje zmian w prawie zmierzające do lepszej ochrony pracowników narażonych na oddziaływanie cytostatyków w środowisku pracy. Med. Pr. 2018;69(1):77–92
The employers responsibilities for the assessment of occupational exposure to cytostatics in the workplace were analyzed in the light of existing legal regulations. Cytostatics may pose a threat to health and life of workers taking care of patients treated oncologically, i.e., pharmacists, physicians, nurses and other personnel. The significant scale of occupational exposure to cytostatics in Poland is confirmed by the data collected in the Central Register of Data on Exposure to Carcinogenic or Mutagenic Substances, Mixtures, Agents or Technological Processes, maintained by the Nofer Institute of Occupational Medicine, Łódź, Poland. The issue of occupational risk assessment of exposure to cytostatics gives raise to numerous concerns. Polish regulations concerning health protection of employees occupationally exposed to cytostatics are not unequivocal, as they are derived from different areas of the law, especially those applying to hazard classification, labeling and preparation of safety data sheets for cytostatics. There are neither binding occupational exposure limits legally set for active compounds of antineoplastic drugs nor methods for monitoring of these substances concentrations in a worker’s breathing zone and biological material. This prevents the employer to carry out the correct assessment of occupational exposure, the results of which are the basis for preparing the proper preventive strategy. In this article the consequences of amendments to the European chemical legislation for employers responsible for adequate protection of health and life of employees exposed to cytostatics, were discussed, as well as some legal changes aimed at a better health and life protection of workers exposed to cytostatics in a workplace were proposed. Med Pr 2018;69(1):77–92
Źródło:
Medycyna Pracy; 2018, 69, 1; 77-92
0465-5893
2353-1339
Pojawia się w:
Medycyna Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
1-Naftyloamina i jej sole – w przeliczeniu na 1-naftyloaminę : dokumentacja proponowanych dopuszczalnych wielkości narażenia zawodowego
1-Naphtylamine and its salts – as 1-naphtylamine : documentation of proposed values of occupational exposure limits (OELs)
Autorzy:
Michalak, Ewa
Czerczak, Sławomir
Powiązania:
https://bibliotekanauki.pl/articles/1845102.pdf
Data publikacji:
2021
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
1-naftyloamina
narażenie zawodowe
toksyczność
NDS
nauki o zdrowiu
inżynieria środowiska
1-naphthylamine
occupational exposure
toxicity
MAC
health sciences
environmental engineering
Opis:
1-Naftyloamina występuje w postaci białych kryształów o charakterystycznym zapachu, które po wystawieniu na działanie powietrza, światła i wilgoci stają się czerwone. Jest stosowana do syntezy barwników i pigmentów, leków, antyoksydantów, herbicydów. Liczba zatrudnionych na stanowiskach, gdzie występowało narażenie zawodowe na 1-naftyloaminę i jej sole w Polsce nie jest znana. W wyniku ostrego zatrucia inhalacyjnego 1-naftyloaminą u ludzi obserwowano: sinienie ust, paznokci i skóry, dezorientację, zawroty i ból głowy, duszność oraz osłabienie. Działanie przewlekłe na zwierzęta 1-naftyloaminy po podaniu drogą pokarmową prowadziło do uszkodzenia wątroby (dystrofia komórek wątrobowych, stłuszczenie wątroby, nagromadzenie lipofuscyny), a przewlekłe narażenie inhalacyjne do zmian parametrów hematologicznych, złuszczającego śródmiąższowego zapalenia płuc, schorzeń płuc i przewlekłego zapalenia nerek i pęcherza moczowego, częściowo związanego z krwiomoczem i albuminurią. Wyniki badań mutagenności i genotoksyczności 1-naf¬tyloaminy nie są jednoznaczne. IARC w 1987 r. zaliczyła 1-naftyloaminę do grupy 3. W porównaniu do 2-naftyloaminy ulegającej w dużym stopniu N-hydroksylacji, 1-naftyloamina nie jest w znaczący sposób N-hydroksylowana. Dlatego brak działania rakotwórczego u zwierząt doświadczalnych może wynikać z braku skutecznej aktywacji metabolicznej. Wartość normatywu higienicznego ustalono na podstawie wartości NOEL, wynoszącej 15 mg/kg mc./dzień, uzyskanej z badań na psach narażanych drogą pokarmową na 1-naftyloaminę przez 9 lub 10 lat. W tych eksperymentach podawanie czystej 1-naftyloaminy, bez zanieczyszczeń izomerem 2-naftyloaminy, nie powodowało zwiększenia częstości zachorowań na raka pęcherza moczowego u psów. Zaproponowano wartość NDS dla 1-naftyloaminy i jej soli na poziomie 3,5 mg/m³. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.
1-Naphthylamine forms white crystals with a characteristic odor that turn red when exposed to air, light and moisture. It is used as an intermediate in the synthesis of dyes, antioxidants, herbicides, drugs and other chemicals. The number of employees exposed to 1-naphthylamine and its salts in Poland has not been studied. The results of acute poisoning by inhalation with 1-naphthylamine by human are blue lips, fingernails and skin, confusion, dizziness, headache, shortness of breath and weakness. Chronic effect on animals of 1-naphthylamine after oral administration leads to liver damage (hepatic cell dystrophy, hepatic steatosis, accumulation of lipofuscin). Chronic inhalation leads to changes in hematological parameters, desquamative interstitial pneumonia, lung disease, and chronic nephritis and bladder inflammation, partly associated with haematuria and albuminuria. The results of the mutagenicity and genotoxicity tests on 1-naphthylamine are inconclusive. In 1987 IARC included 1-naphthylamine in Group 3. Compared to highly N-hydroxylated 2-naphthylamine, 1-naphthylamine is not significantly N-hydroxylated. Therefore, the lack of a carcinogenic effect in experimental animals may be due to the lack of effective metabolic activation. The value of the hygiene standard was derived based on the NOEL value of 15 mg/kg bw/day, obtained from studies on dogs exposed by the oral route for 9 or 10 years. In these experiments, administration of pure 1-naphthylamine, without isomer 2 contamination, did not increase the incidence of bladder cancer in dogs. The maximum acceptable concentration (MAC) value was proposed for 1-naphthylamine and its salt of 3.5 mg/m³ . This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2021, 3 (109); 5-27
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Bezpomiarowa ocena narażenia na działanie substancji chemicznych przez kontakt ze skórą w środowisku pracy
Assessment of predictive dermal exposure to chemicals in the work environment
Autorzy:
Jankowska, Agnieszka
Czerczak, Sławomir
Kupczewska-Dobecka, Małgorzata
Powiązania:
https://bibliotekanauki.pl/articles/2164077.pdf
Data publikacji:
2017-06-27
Wydawca:
Instytut Medycyny Pracy im. prof. dra Jerzego Nofera w Łodzi
Tematy:
narażenie zawodowe
modele predykcyjne
ocena narażenia
higiena pracy
narażenie dermalne
RISKOFDERM
occupational exposure
predictive models
exposure assessment
occupational hygiene
dermal exposure
Opis:
Ocena narażenia dermalnego na substancje chemiczne w środowisku pracy jest zagadnieniem problematycznym. Wynika to w pierwszej kolejności z braku danych na temat wielkości narażenia zawodowego, pochodzących z pomiarów stężeń chemikaliów. Ze względu na powszechność potencjalnego narażenia przez kontakt ze skórą w środowisku pracy i jego konsekwencje zdrowotne konieczne jest szukanie skutecznych rozwiązań umożliwiających wiarygodną ocenę narażenia. Celem pracy jest przybliżenie bezpomiarowej oceny narażenia dermalnego na substancje chemiczne za pomocą modeli predykcyjnych i bliższe przedstawienie zasad działania wybranego modelu polskim użytkownikom. W pracy przedstawiono przykładowe modele wspomagające pracodawcę w ocenie narażenia zawodowego związanego z kontaktem substancji chemicznych ze skórą pracownika, opracowane w krajach Unii Europejskiej, jak również poza Unią. Na podstawie danych literaturowych w artykule krótko opisano wybrane modele do szacowania narażenia dermalnego: EASE (Estimation and Assessment of Substance Exposure – oszacowanie i ocena narażenia na substancję), COSHH Essentials (Control of Substances Hazardous to Health Regulations – utrzymywanie pod kontrolą substancji niebezpiecznych dla zdrowia), DREAM (Dermal Exposure Assessment Method – metoda oceny narażenia dermalnego), Stoffenmanager, ECETOC TRA (European Centre for Ecotoxicology and Toxicology of Chemicals Targeted Risk Assessment – ukierunkowane szacowanie ryzyka Europejskiego Centrum ds. Ekotoksykologii i Toksykologii Chemikaliów), MEASE (Metal’s EASE), PHED (Pesticide Handlers Exposure Database – baza danych na temat narażenia użytkowników pestycydów), DERM (Dermal Exposure Ranking Method – metoda rankingu narażenia dermalnego) i RISKOFDERM (Risk Assessment of Occupational Dermal Exposure to Chemicals – ocena ryzyka wynikającego z narażenia dermalnego na chemikalia). Ponadto bardziej szczegółowo zaprezentowano charakterystykę modelu RISKOFDERM, wskazówki dotyczące korzystania z narzędzia oraz informacje na temat danych wejściowych i wyjściowych tego modelu. Opisano problem oceny narażenia dermalnego w ciągu całego dnia roboczego, a także przedstawiono przykładowe szacowanie narażenia za pomocą modelu RISKOFDERM i dotychczasową ocenę skuteczności tego modelu. W przypadku braku danych z pomiarów stężeń chemikaliów stwarzających zagrożenie dla pracownika w wyniku kontaktu ze skórą użycie modelu RISKOFDERM umożliwia ocenę potencjalnego dermalnego narażenia zawodowego, co może podnieść jakość oceny ryzyka, a przez to skuteczność sterowania ryzykiem wynikającym z narażenia przez skórę. Med. Pr. 2017;68(4):557–569
Assessment of dermal exposure to chemicals in the work environment is problematic, mainly as a result of the lack of measurement data on occupational exposure to chemicals. Due to common prevalence of occupational skin exposure and its health consequences it is necessary to look for efficient solutions allowing for reliable exposure assessment. The aim of the study is to present predictive models used to assess non-measured dermal exposure, as well as to acquaint Polish users with the principles of the selected model functioning. This paper presents examples of models to assist the employer in the the assessment of occupational exposure associated with the skin contact with chemicals, developed in European Union (EU) countries, as well as in countries outside the EU. Based on the literature data dermal exposure models EASE (Estimation and Assessment of Substance Exposure), COSHH Essentials (Control of Substances Hazardous to Health Regulations), DREAM (Dermal Exposure Assessment Method), Stoffenmanager , ECETOC TRA (European Centre for Ecotoxicology and Toxicology of Chemicals Targeted Risk Assessment), MEASE (Metal’s EASE), PHED (Pesticide Handlers Exposure Database), DERM (Dermal Exposure Ranking Method) and RISKOFDERM (Risk Assessment of Occupational Dermal Exposure to Chemicals) were briefly described. Moreover the characteristics of RISKOFDERM, guidelines for its use, information on input and output data were further detailed. Problem of full work shift dermal exposure assessment is described. An example of exposure assessment using RISKOFDERM and effectiveness evaluation to date were also presented. When no measurements are available, RISKOFDERM allows dermal exposure assessment and thus can improve the risk assessment quality and effectiveness of dermal risk management. Med Pr 2017;68(4):557–569
Źródło:
Medycyna Pracy; 2017, 68, 4; 557-569
0465-5893
2353-1339
Pojawia się w:
Medycyna Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Fulereny – charakterystyka substancji, działanie biologiczne i dopuszczalne poziomy narażenia zawodowego
Fullerenes: Characteristics of the substance, biological effects and occupational exposure levels
Autorzy:
Świdwińska-Gajewska, Anna M.
Czerczak, Sławomir
Powiązania:
https://bibliotekanauki.pl/articles/2164392.pdf
Data publikacji:
2016-06-09
Wydawca:
Instytut Medycyny Pracy im. prof. dra Jerzego Nofera w Łodzi
Tematy:
nanocząstki
narażenie zawodowe
najwyższe dopuszczalne stężenie
nanomateriały
wartości dopuszczalnych stężeń
fuleren
nanoparticles
occupational exposure
occupational exposure limit
nanomaterials
occupational exposure level
fullerene
Opis:
Fulereny są cząsteczkami złożonymi z parzystej liczby atomów węgla o sferycznej, kulistej lub elipsoidalnej, zamkniętej strukturze przestrzennej. Najbardziej popularnym fulerenem jest cząsteczka C60 o kulistej budowie – ściętego dwudziestościanu foremnego, przypominającego piłkę nożną. Fulereny znajdują szerokie zastosowanie przede wszystkim w diagnostyce i medycynie, ale również w przemyśle elektronicznym i energetycznym. Narażenie zawodowe na fuleren może wystąpić głównie przy jego produkcji. Stężenia w środowisku pracy fulerenów, opisane w literaturze, wynosiły 0,12–1,2 μ/m³ dla frakcji nanocząstek (< 100 nm), co może świadczyć o niewielkim narażeniu. Fuleren jednak w dużej części aglomeruje do większych cząstek. Wchłanianie fulerenu drogą pokarmową i oddechową jest niewielkie oraz nie jest on absorbowany przez skórę. Po podaniu dożylnym fuleren może kumulować się w wątrobie oraz w mniejszym stopniu w śledzionie lub nerkach. Nie obserwowano działania fulerenu drażniącego ani uczulającego na skórę w badaniach na zwierzętach, jedynie słabe działanie drażniące na oczy. W badaniach inhalacyjnych na gryzoniach fuleren wywoływał przejściowe zmiany zapalne w płucach. Narażenie drogą pokarmową nie wywoływało większych negatywnych skutków. Fuleren nie wykazywał działania mutagennego ani genotoksycznego w badaniach eksperymentalnych. Nie ma opublikowanych danych dotyczących rakotwórczego działania nanocząstek fulerenu u ludzi i zwierząt. Istnieją natomiast doniesienia o możliwym szkodliwym wpływie fulerenu na płód u myszy po podaniu dootrzewnowym lub dożylnym. Fuleren w czystej postaci charakteryzuje się słabym wchłanianiem i niską toksycznością oraz nie stanowi zagrożenia w środowisku pracy. Autorzy niniejszej pracy stoją na stanowisku, że nie ma podstaw do wyznaczenia najwyższego dopuszczalnego stężenia (NDS) fulerenu C60 w niezmodyfikowanej formie. Pochodne fulerenów, z uwagi na odmienne właściwości, wymagają osobnej analizy pod względem szacowania ryzyka zawodowego. Med. Pr. 2016;67(3):397–410
Fullerenes are molecules composed of an even number of carbon atoms of a spherical or an ellipsoidal, closed spatial structure. The most common fullerene is the C60 molecule with a spherical structure – a truncated icosahedron, compared to a football. Fullerenes are widely used in the diagnostics and medicine, but also in the electronics and energy industry. Occupational exposure to fullerene may occur during its production. The occupational concentrations of fullerenes reached 0.12–1.2 μ/m³ for nanoparticles fraction (< 100 nm), which may evidence low exposure levels. However, fullerene mostly agglomerates into larger particles. Absorption of fullerene by oral and respiratory routes is low, and it is not absorbed by skin. After intravenous administration, fullerene accumulates mainly in the liver but also in the spleen and the kidneys. In animal experiments there was no irritation or skin sensitization caused by fullerene, and only mild irritation to the eyes. Fullerene induced transient inflammation in the lungs in inhalation studies in rodents. Oral exposure does not lead to major adverse effects. Fullerene was not mutagenic, genotoxic or carcinogenic in experimental research. However, fullerene may cause harmful effects on the mice fetus when administered intraperitoneally or intravenously. Pristine C60 fullerene is characterized by poor absorption and low toxicity, and it does not pose a risk in the occupational environment. The authors of this study are of the opinion that there is no ground for estimating the maximum allowable concentration (NDS) of pristine fullerene C60. Fullerene derivatives, due to different characteristics, require separate analysis in terms of occupational risk assessment. Med Pr 2016;67(3):397–410
Źródło:
Medycyna Pracy; 2016, 67, 3; 397-410
0465-5893
2353-1339
Pojawia się w:
Medycyna Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies