Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "heat mass transfer" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
The effect of temperature of rocks on microclimatic conditions in long gate roads and galleries in coal mines
Wpływ temperatury pierwotnej skał na parametry mikroklimatu w długich wyrobiskach korytarzowych
Autorzy:
Cygankiewicz, J.
Knechtel, J.
Powiązania:
https://bibliotekanauki.pl/articles/219812.pdf
Data publikacji:
2014
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
bezpieczeństwo
aerologia
klimatyzacja
przepływ ciepła i masy
safety
ventilation
air-conditioning
heat and mass transfer
Opis:
The aim of this study was to examine the effect of the temperature of surrounding rocks on enthalpy and temperature of air flowing along several model mine workings. Long workings surrounded by non- -coal rocks as well longwall gates surrounded by coal were taken into consideration. Computer-aided simulation methods were used during the study. At greater depths the amount of moisture transferred into a mine working from the rock mass is two orders of magnitude smaller than the moisture that comes from external (technological) sources, mainly from coal extraction-related processes, therefore in the equation describing temperature changes only the terms representing the flux of heat from rocks were included. The model workings, for calculation purposes, were divided into sections, 50 m in length each. For each of the sections temperature of its ribs and temperature and stream of enthalpy of air flowing along it were calculated with the use of the finite differences method. For workings surrounded by non-coal rocks two variant calculations were carried out, namely with or without technological sources of heat. For coal surrounded workings (longwall gates) a new method for determination of heat from coal oxidation was developed, based on the findings by Cygankiewicz J. (2012a, 2012b). Using the results of a study by J.J. Drzewiecki and Smolka (1994), the effects of rock mass fracturing on transfer of heat into the air stream flowing along a working were taken into account.
Badano wpływ temperatury pierwotnej skał na strumień entalpii oraz temperaturę powietrza w wyrobisku korytarzowym o długości 2000 m. Rozpatrywano wyrobiska kamienne oraz chodniki podścianowe. W badaniach zastosowano metodę symulacji komputerowych. Na dużych głębokościach wilgoć przenoszona z górotworu do wyrobiska jest dwa rzędy wielkości mniejsza od wilgoci pochodzącej od procesów technologicznych. W związku z powyższym w równaniu opisującym zmiany temperatury w masywie skalnym uwzględniono tylko człon reprezentujący ruch ciepła w skałach. Badane wyrobisko podzielono na odcinki o długości 50 m. Korzystając z metody różnic skończonych dla każdego z odcinków wyznaczono temperaturę ociosu, a następnie temperaturę i strumień entalpii powietrza. W odniesieniu do wyrobisk kamiennych rozważania przeprowadzono dla wariantu z technologicznymi źródłami ciepła oraz bez takich źródeł. Dla chodników węglowych przedstawiono nowy sposób określenia ciepła utleniania węgla, na podstawie wyników badań J. Cygankiewicza (2012a, 2012b). Korzystając z wyników badań J. Drzewieckiego i J. Smołki (1994), uwzględniono wpływ spękań górotworu na przenoszenie ciepła do powietrza w wyrobisku.
Źródło:
Archives of Mining Sciences; 2014, 59, 1; 189-216
0860-7001
Pojawia się w:
Archives of Mining Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wpływ głębokości eksploatacji węgla na ciepło oddawane przez górotwór
The impact of coal mining depth on the heat emitted by the rock mass
Autorzy:
Cygankiewicz, J.
Knechtel, J.
Powiązania:
https://bibliotekanauki.pl/articles/164316.pdf
Data publikacji:
2017
Wydawca:
Stowarzyszenie Inżynierów i Techników Górnictwa
Tematy:
górotwór
wyrobisko górnicze
przepływ ciepła
zagrożenie klimatyczne
rock mass
mine working
heat transfer
climatic hazard
Opis:
Dla zbadania wpływu głębokości eksploatacji węgla na ilość ciepła traconego przez górotwór zastosowano metodę symulacji numerycznych. W pracy rozważa się oddziały wydobywcze składające się z chodnika podścianowego, ściany eksploatacyjnej i chodnika nadścianowego. Do każdego z rejonów powietrze świeże od szybu wdechowego doprowadzane jest przekopem głównym i pochylnią do pokładu węglowego. Rozważa się oddziały wydobywcze, na których temperatura pierwotna skał wynosi odpowiednio: 35÷37°C (najpłytszy), 40÷42°C, 45÷47°C oraz 50÷52°C (najgłębszy). Dane początkowe do obliczeń dla wszystkich oddziałów przyjęto takie same, za wyjątkiem temperatury pierwotnej skał i wysokości geodezyjnych, na których zlokalizowane są badane wyrobiska. Wykonano alternatywne prognozy klimatyczne, przy czym potencjał chłodniczy w każdym wariancie dobrano tak, aby prognozowana temperatura powietrza mierzona termometrem suchym była nie wyższa od 33°C. Dla takich warunków (korzystając z metody różnic skończonych) wyznaczono strefy wychłodzenia górotworu otaczającego wyrobiska korytarzowe i ścianowe każdego z wymienionych rejonów wydobywczych. Po porównaniu ze sobą wyników obliczeń wykonanych dla poszczególnych oddziałów wydobywczych stwierdzono, że ilość ciepła oddawana przez górotwór do najgłębiej położonych wyrobisk (zlokalizowanych na głębokości, na której temperatura pierwotna skał wynosi 50÷52°C) jest czterokrotnie większa od ilości ciepła oddawanej przez górotwór do wyrobisk położonych najpłycej (zlokalizowanych na głębokości, na której temperatura pierwotna skał wynosi 35÷37°C). Oddział wydobywczy, w którym temperatura pierwotna skał wynosi 40÷42°C otrzymuje od górotworu dwa razy tyle ciepła co oddział najpłytszy. W podsumowaniu zwrócono uwagę, że prowadzenie wydobycia na dużej głębokości jest związane z koniecznością stosowania klimatyzacji. Zatem trzeba ponieść dodatkowe koszty związane z chłodzeniem powietrza. Koszty te jednak mogą się częściowo zwrócić, jeśli zagospodaruje się ciepło oddawane przez górotwór. Ciepło to można odprowadzić na powierzchnię, np. z gorącą wodą (o temperaturze powyżej 40°C) z chłodnic wyparnych ziębiarek, pracujących na dole kopalni i wykorzystać do celów komunalnych lub do zasilania ziębiarek amoniakalnych zabudowanych na powierzchni.
A method of numerical simulations has been used for investigating the impact of coal mining depth on the heat emitted by the rock mass. This work deals with the mining districts consisting of the lower longwall gate, longwall face and the upper longwall gate. For each district, fresh air is supplied from the exhaust shaft through the main drift and ramp into a coal deposit. The mining districts considered have been those in which the primary rock temperature is as follows: 35÷37°C (the shallowest one), 40÷42°C, 45÷47°C and 50÷52°C (the deepest one). Input data for calculations for all districts have been assumed the same, except the primary temperature of rocks and geodetic heights, at which investigated workings are being located. Alternative climate predictions have been performed. Cooling potential in all variants have been chosen in such a way so that the predicted air temperature measured with dry-bulb thermometer is not higher than 33°C. For such conditions, the cooling zones of the rock mass surrounding gallery and longwall workings have been determined for each of mentioned mining area (applying the finite difference method). Based on a comparison of the results of calculations performed for the individual mining districts it has been stated that the amount of heat emitted by the rock mass into the deepest workings (located at a depth where the primary rock temperature is 50÷52°C) is four times higher than the amount emitted by the rock mass into the workings located at the shallowest depths (located at the depth at which the primary rock temperature is 35÷37°C). The mining district, in which the primary rock temperature is 40÷42°C, obtains from the rock mass twice as much heat as the shallowest district. In the summary it has been pointed out that carrying out exploitation at large depths requires use of air conditioning. Thus, additional costs associated with air cooling have to be incurred. These can, however, be partially recouped if the heat emitted by the rock mass is to be utilized. This heat can be transported to the surface e.g. with hot water (at temperature above 40°C) from evaporative coolers of chillers operating underground and then used for municipal purposes or to power ammonia chillers installed on the surface.
Źródło:
Przegląd Górniczy; 2017, 73, 2; 8-17
0033-216X
Pojawia się w:
Przegląd Górniczy
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies