Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "pattern extraction" wg kryterium: Wszystkie pola


Wyświetlanie 1-1 z 1
Tytuł:
Recognition of Sign Language from High Resolution Images Using Adaptive Feature Extraction and Classification
Autorzy:
Csóka, Filip
Polec, Jaroslav
Csóka, Tibor
Kačur, Juraj
Powiązania:
https://bibliotekanauki.pl/articles/226004.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
sign language
gesture
sign
recognition
CNN
LoG
real-time
pattern recognition
machine learning
Opis:
A variety of algorithms allows gesture recognition in video sequences. Alleviating the need for interpreters is of interest to hearing impaired people, since it allows a great degree of self-sufficiency in communicating their intent to the non-sign language speakers without the need for interpreters. State-of-the-art in currently used algorithms in this domain is capable of either real-time recognition of sign language in low resolution videos or non-real-time recognition in high-resolution videos. This paper proposes a novel approach to real-time recognition of fingerspelling alphabet letters of American Sign Language (ASL) in ultra-high-resolution (UHD) video sequences. The proposed approach is based on adaptive Laplacian of Gaussian (LoG) filtering with local extrema detection using Features from Accelerated Segment Test (FAST) algorithm classified by a Convolutional Neural Network (CNN). The recognition rate of our algorithm was verified on real-life data.
Źródło:
International Journal of Electronics and Telecommunications; 2019, 65, 2; 303-308
2300-1933
Pojawia się w:
International Journal of Electronics and Telecommunications
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies