- Tytuł:
- Average convergence rate of the first return time
- Autorzy:
-
Choe, Geon
Kim, Dong - Powiązania:
- https://bibliotekanauki.pl/articles/965737.pdf
- Data publikacji:
- 2000
- Wydawca:
- Polska Akademia Nauk. Instytut Matematyczny PAN
- Tematy:
-
entropy
the first return time
period of an irreducible matrix
Wyner-Ziv-Ornstein-Weiss theorem
data compression
Markov chain - Opis:
- The convergence rate of the expectation of the logarithm of the first return time $R_{n}$, after being properly normalized, is investigated for ergodic Markov chains. I. Kontoyiannis showed that for any β > 0 we have $log[R_{n}(x)P_{n}(x)] =o(n^{β})$ a.s. for aperiodic cases and A. J. Wyner proved that for any ε >0 we have $-(1 + ε)log n ≤ log[R_{n}(x)P_{n}(x)] ≤ loglog n$ eventually, a.s., where $P_{n}(x)$ is the probability of the initial n-block in x. In this paper we prove that $ E[log R_{(L,S)} - (L-1)h]$ converges to a constant depending only on the process where $R_{(L,S)}$ is the modified first return time with block length L and gap size S. In the last section a formula is proposed for measuring entropy sharply; it may detect periodicity of the process.
- Źródło:
-
Colloquium Mathematicum; 2000, 84/85, 1; 159-171
0010-1354 - Pojawia się w:
- Colloquium Mathematicum
- Dostawca treści:
- Biblioteka Nauki