Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "sewage effluent" wg kryterium: Temat


Wyświetlanie 1-1 z 1
Tytuł:
Zastosowanie sztucznych sieci neuronowych do prognozowania zawartości azotu ogólnego w odpływie z oczyszczalni ścieków
Application of artificial neural networks to forecasting total nitrogen content in secondary effluent from treatment plants
Autorzy:
Wąsik, E.
Chmielowski, K.
Studziński, J.
Szeląg, B.
Powiązania:
https://bibliotekanauki.pl/articles/237416.pdf
Data publikacji:
2018
Wydawca:
Polskie Zrzeszenie Inżynierów i Techników Sanitarnych
Tematy:
ścieki komunalne
ścieki oczyszczone
modelowanie
prognozowanie
sztuczne sieci neuronowe
azot ogólny
azot amonowy
azotyny
azotany
azot organiczny
sewage
secondary effluent
modeling
forecasting
artificial neural networks
total nitrogen
ammonia nitrogen
nitrites
nitrates
organic nitrogen
Opis:
Zaprezentowano możliwość wykorzystania sztucznych sieci neuronowych do prognozowania zawartości azotu ogólnego w ściekach oczyszczonych w funkcji jego różnych postaci występujących w odpływie z oczyszczalni ścieków. W badaniach zastosowano dane z lat 2010–2016, zawierające pomiary zawartości związków azotu w ściekach odpływających z oczyszczalni obsługującej aglomerację o równoważnej liczbie mieszkańców powyżej 100000. Zbiór danych wejściowych został wstępnie poddany analizie skupień i następnie wykorzystany do trenowania sieci neuronowej w postaci perceptronu wielowarstwowego. Na podstawie uzyskanych symulacji stwierdzono, że najmniejsze wartości błędów prognozy ilosci azotu ogólnego (2÷3%) uzyskano w wariancie, gdy jego wartość była funkcją wszystkich postaci azotu występujących w oczyszczonych ściekach. W przypadku modelu wykorzystującego jedynie dane o zawartości azotu nieorganicznego oraz azotanów otrzymane wyniki symulacji niewiele różniły się od wartości rzeczywistych, na co wskazuje bardzo duża wartość współczynnika korelacji (>97%). Wartość średniego błędu bezwzględnego w tym przypadku zwiększyła się tylko o około 4 punkty procentowe do wartości 6,2% (proces uczenia) oraz 6,9% (proces testowania/walidacji) w stosunku do symulacji wykorzystującej wszystkie postacie azotu w ściekach.
Potential application of artifi cial neural networks (ANN) to forecast total nitrogen content (TNC) in treated wastewater was presented as a function of selected nitrogen forms present in the secondary effl uent. The analyzed data from the period of 2010–2016 covered measurements of the nitrogen content in the effl uent from the treatment plant servicing agglomeration with a population equivalent of more than 100,000. The input data set was initially subjected to cluster analysis and then, used to train a neural network in the form of a multilayer perceptron (MLP). The simulations demonstrated that the smallest error values for the forecast of TNC (2–3%) were obtained for the variant, the value of which was a function of all the forms of nitrogen present in the secondary effl uent. For the total nitrogen model based on inorganic nitrogen and nitrates data only, the simulation results did not differ signifi cantly from the actual values, as indicated by a very high correlation coeffi cient (over 97%). In this case, the value of the mean absolute error increased only by nearly 4% to 6.2% (learning process) or 6.9% (testing/validation process), compared to the simulation based on all the nitrogen forms in the sewage.
Źródło:
Ochrona Środowiska; 2018, 40, 1; 29-33
1230-6169
Pojawia się w:
Ochrona Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies