Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "pokrycie" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Przykład wykorzystania sieci neuronowych w cyfrowej klasyfikacji i pokrycia terenu
Autorzy:
Chmiel, J.
Powiązania:
https://bibliotekanauki.pl/articles/130272.pdf
Data publikacji:
2002
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
sieć neuronowa
pokrycie terenu
analiza cyfrowa
neural network
land cover
digital analysis
Opis:
W referacie przedstawiono metodę analizy cyfrowej wykorzystującą sieci neuronowe w zastosowaniu do klasyfikacji pokrycia terenu w dość urozmaiconym i zarazem skomplikowanym obszarze zlewni rzeki Krutyni. Wyniki klasyfikacji pokrycia terenu z wykorzystaniem sieci neuronowych zostały porównane z wynikami klasyfikacji w oparciu o klasyczny algorytm ‘maksymalne prawdopodobieństwo ’.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2002, 12; 63-78
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Cyfrowa analiza zdjęcia satelitarnego VHR dla pozyskiwania danych o pokryciu terenu – podejście obiektowe i pikselowe
Digital analysis of VHR satellite image for obtainig land cover data – object and pixel-approach
Autorzy:
Chmiel, J.
Fijałkowska, A.
Woronkiewicz, Ł.
Powiązania:
https://bibliotekanauki.pl/articles/129896.pdf
Data publikacji:
2007
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
pokrycie terenu
klasyfikacja
analiza cyfrowa
zdjęcie satelitarne VHR
podejście obiektowe
land cover
classification
digital analysis
VHR satellite image
object approach
Opis:
Zdjęcia satelitarne o bardzo wysokiej rozdzielczości przestrzennej (VHR) staja się niezastąpionym w wielu zastosowaniach źródłem danych i informacji o powierzchni Ziemi ze względu na wysokie walory interpretacyjne i możliwe do uzyskania dokładności kartometryczne końcowych produktów. Ma to szczególne znaczenie dla aplikacji, gdzie przedmiotem zainteresowania są obszary o złożonej strukturze przestrzennej. Rosnące potrzeby w zakresie pozyskiwania ze zdjęć satelitarnych VHR różnorakich informacji o powierzchni Ziemi, w tym o pokryciu terenu, wymagają jednakże wypracowania bardziej skutecznych i wydajnych metod analizy cyfrowej. W przeciwieństwie do tradycyjnych metod cyfrowej klasyfikacji, które za jednostkę podstawowa przetwarzania (analizy) przyjmują piksel, a zbiór cech wyróżniających definiowany jest zasadniczo w przestrzeni spektralnej, obiektowo zorientowane podejście do analizy pozwala rozszerzyć zbiór cech (wyróżniających obiekty) o elementy związane z tekstura, wielkością, kształtem, szeroko rozumianym sąsiedztwem, kontekstem. Obiektowe podejście często pozwala także w większym stopniu na swego rodzaju obejście pewnych problemów tradycyjnych metod klasyfikacji na poziomie piksela wynikających z wysokiej heterogeniczności wyróżnialnych powierzchni i częstej obecności tzw. statystycznego szumu jako konsekwencji wysokiej rozdzielczość przestrzennej. Wyłonione w wyniku analizy obiekty swoim rozkładem przestrzennym w bardziej naturalny sposób formują obraz rzeczywistości. W niniejszym artykule prezentowane są określone wyniki z zakresu cyfrowej analizy zdjęcia satelitarnego VHR, której celem było pozyskanie danych o pokryciu terenu z wykorzystaniem zarówno pikselowego, jak i obiektowego podejścia do analizy. W pierwszym przypadku zastosowano nadzorowane podejście do klasyfikacji, wykorzystując znane w tym zakresie tradycyjne algorytmy. Podejście obiektowe realizowano w oparciu o funkcjonalność oprogramowania eCognition (Definiens). W tej części istotne było równie włączenie do analizy określonych elementów wiedzy i innych informacji, co miało na celu podniesienie efektywności metody i poprawności końcowych wyników. Określone testy zostały przeprowadzone dla obszaru o zróżnicowanym stopniu złożoności charakterystyki przestrzennej. Dla terenów rolniczych dodatkowo ważne było tak e rozpoznanie upraw. Uzyskane wyniki podkreślają (przy określonych założeniach wstępnych) zalety i ograniczenia zastosowanych podejść i metod, wskazując jednak e pewne widoczne zalety podejścia obiektowego.
Very high resolution satellite images with their valuable photo-interpretation properties and potential high level of geometric accuracy of end products are considered in many applications as a crucial source of data and information about the Earth surface. It is of special importance for such applications in which the area of interest is characterised by complex spatial structure. Growing needs for obtaining diverse categories of information about Earth surface, including land cover, require effective and efficient methods of digital analysis to be worked out. In contrast to traditional methods of digital classification, which use pixel as a reference unit of processing and the frame of discriminating features is basically defined in spectral space, the object-based approach allows to increase the set of discriminating features, including new elements related to texture, size, shape, widely understood neighbourhood, and context. Object-based approach often allows, to a large extent, to avoid some problems of traditional pixel-based classifiers, which result from high level of heterogeneity of identified areas and the frequent presence of so-called statistical noise, which is considered as a consequence of high spatial resolution. The finally created and identified objects in object-based analysis, in their spatial distribution form more natural image of reality. In the present paper, certain results are presented from a range of digital analysis of VHR satellite image, where the main goal was to achieve land cover data applying pixel and object-based approach. In first case, the supervised approach was used with known traditional algorithms. The object-based approach was adopted based on Definiens Professional set of tools. In the latter approach, the essential was also to include certain elements of knowledge and ancillary information with the aim to improve efficiency of the method and accuracy of final results. Given tests were performed for the terrain of diverse levels of spatial complexity. For the rural areas, an important issue was also to recognize the crops. The results showed (with the certain input assumptions) the positive aspects and limitations of applied approaches and methods, pointing at some visible advantages of the object-based approach.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2007, 17a; 139-148
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies