Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Hossain, M." wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
Measurement methods of dynamic yarn tension in a ring spinning process
Metody pomiaru naprężeń przędz w stanie dynamicznym w przędzarce obrączkowej
Autorzy:
Hossain, M.
Abdkader, A.
Nocke, A.
Unger, R.
Krzywinski, F.
Hasan, M. M. B.
Cherif, C.
Powiązania:
https://bibliotekanauki.pl/articles/232351.pdf
Data publikacji:
2016
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Biopolimerów i Włókien Chemicznych
Tematy:
balloon tension
ring spinning
winding tension
measurement method
przędzenie obrączkowe
naprężenie przędzy
strefa skręcania
strefa balonu
metoda pomiaru
Opis:
The most common measuring method to characterise the dynamic yarn path in the ring spinning process is to measure the yarn tension, where the yarn path is almost straight. However, it is much more complex to measure the yarn tension at the other positions, for example, between the yarn guide and traveller (balloon zone) and between the traveller and winding point of the cop (winding zone), as the yarn rotates continuously around the spindle axis. In this paper, two new methods of yarn tension measurement in the balloon zone are proposed. In the first method, the balloon shape was first recorded with a high speed camera. The balloon tension was then calculated by comparing the yarn strain (occurring in the balloon zone) measured by a digital image analysis program with the stress-strain curve of the yarn produced. In the second method, the radial forces of the rotating balloon were measured by using modified measurement techniques for measurement of yarn tension. Moreover a customised sensor was developed to measure the winding tension between the traveller and cop. The values measured were validated with a theoretical model and a good correlation between the measured and theoretical values could be revealed.
Najczęściej stosowaną metodą pomiarową dla scharakteryzowania dynamiki przędzy podczas przędzenia obrączkowego jest pomiar naprężenia przędzy w miejscu gdzie jej przebieg jest prawie prostoliniowy. Jednakże znacznie bardziej skomplikowany jest pomiar naprężenia przędzy pomiędzy prowadnikiem i biegaczem (strefa balonu) oraz pomiędzy biegaczem i punktem skręcania przed cewką nawojowa (strefa skręcania) ponieważ przędza wiruje w sposób ciągły wokół osi wrzeciona. W pracy przedstawiono dwie nowe metody pomiaru naprężenia przędzy w strefie balonu. W pierwszej wstępnie określano kształt balonu za pomocą kamery o dużej prędkości powtarzania. Następnie określano naprężenie balonu przez porównanie odkształceń przędzy powstających w strefie balonu a mierzonych za pomocą cyfrowej analizy obrazu i programu wykorzystującego krzywą zależności naprężenie-odkształcenie produkowanej przędzy. W drugiej metodzie promieniowe siły wirującego balonu były mierzone przy zastosowaniu zmodernizowanej techniki pomiaru naprężenia przędzy. Pomierzone wartości były porównywane z wartościami modelu teoretycznego przy czym stwierdzono istnienie bardzo dobrej korelacji.
Źródło:
Fibres & Textiles in Eastern Europe; 2016, 1 (115); 36-43
1230-3666
2300-7354
Pojawia się w:
Fibres & Textiles in Eastern Europe
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Mathematical Modelling of Dynamic Yarn Path Considering the Balloon Control Ring and Yarn Elasticity in the Ring Spinning Process Based on the Superconducting Bearing Twisting Element
Matematyczne modelowanie dynamicznej trajektorii przędzy z uwzględnieniem pierścienia sterującego balonem i elastyczności przędzy w procesie przędzeniaobrączkowego opartego na nadprzewodzącym elemencie skręcającym łożyska
Autorzy:
Hossain, M.
Telke, C.
Abdkader, A.
Sparing, M.
Espenhahn, T.
Hühne, R.
Cherif, C.
Beitelschmidt, M.
Powiązania:
https://bibliotekanauki.pl/articles/232337.pdf
Data publikacji:
2018
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Biopolimerów i Włókien Chemicznych
Tematy:
mathematical modelling
balloon control ring
yarn elasticity
yarn tension
balloon form
ring spinning
superconducting magnetic bearing
modelowanie matematyczne
pierścień sterujący balonem
elastyczność przędzy
napięcie przędzy
kształt balonu
wirowanie pierścieniowe
nadprzewodzące łożysko magnetyczne
Opis:
The productivity of the conventional ring spinning process is currently limited by the frictional heat that occurs in the ring/traveler twisting system. In the framework of a fundamental research project from the German Research Foundation (DFG), the levitation principle of superconducting magnetic bearing (SMB) was implemented as a twisting element in order to eliminate the frictional problem and thus aim, at least, to double the productivity. A mathematical model of the dynamic yarn path has already been presented considering the friction free SMB system up to an angular spindle speed of 25.000 r.p.m. In this paper, the existing theoretical model, which was developed up to 25.000 r.p.m, was further modified considering the balloon control ring and yarn elasticity at a higher angular spindle speed, such as 50.000 r.p.m. The model was solved numerically using the Runge-Kutta method. With this model, it is possible to estimate the yarn tension distribution and balloon form considering the above-mentioned parameters. The model established was further validated by comparing the yarn tension and balloon forms predicted with measured ones up to an angular spindle speed of 15.000 r.p.m in a ring spinning tester based on superconducting magnetic bearing.
Wydajność konwencjonalnego procesu przędzenia obrączkowego jest ograniczana przez ciepło tarcia występujące w układzie skręcania pierścień /wahadło. W ramach projektu badawczego z Niemieckiej Fundacji Badawczej (DFG) wprowadzono zasadę lewitacji nadprzewodzącego łożyska magnetycznego (SMB) jako elementu skręcającego w celu wyeliminowania problemu tarcia. Celem pracy było przynajmniej podwojenie wydajność. Przedstawiono model matematyczny dynamicznej trajektorii przędzy z uwzględnieniem systemu SMB bez tarcia, przy prędkości obrotowej wrzeciona 25.000 obr./min. Nastęnie istniejący del teoretyczny został dodatkowo zmodyfikowany, a przy modyfikacji wzięto pod uwagę pierścień kontrolny balonu i elastyczność przędzy przy wyższej prędkości obrotowej wrzeciona tj. 50.000 obr./min. Model został rozwiązany numerycznie za pomocą metody RUNGE-KUTTA. W tym modelu możliwe jest oszacowanie rozkładu naprężenia przędzy i kształtu balonu z uwzględnieniem wyżej wymienionych parametrów. Ustalony model został dodatkowo zweryfikowany poprzez porównanie naprężenia przędzy i przewidywanych form balonu. W tym celu użyto testera przędzenia obrączkowego opartego na nadprzewodzącym łożysku magnetycznym.
Źródło:
Fibres & Textiles in Eastern Europe; 2018, 5 (131); 32-40
1230-3666
2300-7354
Pojawia się w:
Fibres & Textiles in Eastern Europe
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies