- Tytuł:
- Biomechanical evaluation of tendon connection with novel suture techniques
- Autorzy:
-
Chen, Z.
Wang, J.
Wei, J.- S.
Hou, Z.-Y.
Li, M.
Chen, Q.-X - Powiązania:
- https://bibliotekanauki.pl/articles/306902.pdf
- Data publikacji:
- 2018
- Wydawca:
- Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
- Tematy:
-
ścięgno Achillesa
IFLL
biomechanika
internal fixation with limited loop
Achilles tendon
biomechanics - Opis:
- Achilles tendon rupture is a severe injury with poor curative effect due to its anatomical characteristic and mechanical peculiarity. Internal fixation of limited loop (IFLL) with steel-wire has been applied on patients with tendon rupture to fix the broken ends before physical rehabilitation. The purpose of this study is to investigate the biomechanical property and radiological characteristic of such suture technique for the repairment of tendon rupture. Methods: Tendons of pigs’ hint feet were separated for the biomechanical study. Suture surgery was performed according to the protocol of IFLL. Biomechanical Testing Machine was adopted to conduct the biomechanical tensile load examination. The maximal load, elastic modulus and tendon stiffness of the stitched tendons with or without reinforcement were examined. Results: The maximum tensile load of the stitched tendons using IFLL reached 1/4 of the uninjured tendon’s maximum tensile load, indicating that such suture technique is capable of providing enough tension for the ruptured tendon. Surprisingly, tendons fixed with titanium wire showed the highest load tension, which was comparable to the undamaged tendon. Therefore, we found the biomechanical basis of using IFLL in effectively connecting the rupture ends of tendons. Conclusions: In conclusion, we provide biomechanical evidence for the use of IFLL in treatment of Achilles tendon rupture, by providing enough strength for the ankle function. Such suture technique could help the patients with better rehabilitation and reduced in-hospital stay after Achilles tendon injury.
- Źródło:
-
Acta of Bioengineering and Biomechanics; 2018, 20, 1; 135-141
1509-409X
2450-6303 - Pojawia się w:
- Acta of Bioengineering and Biomechanics
- Dostawca treści:
- Biblioteka Nauki