- Tytuł:
- Vertex-Distinguishing IE-Total Colorings of Complete Bipartite Graphs Km,N(m < n)
- Autorzy:
-
Chen, Xiang’en
Gao, Yuping
Yao, Bing - Powiązania:
- https://bibliotekanauki.pl/articles/30146641.pdf
- Data publikacji:
- 2013-05-01
- Wydawca:
- Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
- Tematy:
-
complete bipartite graphs
IE-total coloring
vertex-distinguishing IE-total coloring
vertex-distinguishing IE-total chromatic number - Opis:
- Let G be a simple graph. An IE-total coloring f of G is a coloring of the vertices and edges of G so that no two adjacent vertices receive the same color. Let C(u) be the set of colors of vertex u and edges incident to u under f. For an IE-total coloring f of G using k colors, if C(u) ≠ C(v) for any two different vertices u and v of G, then f is called a k-vertex-distinguishing IE-total-coloring of G, or a k-VDIET coloring of G for short. The minimum number of colors required for a VDIET coloring of G is denoted by χievt(G), and is called vertex-distinguishing IE-total chromatic number or the VDIET chromatic number of G for short. VDIET colorings of complete bipartite graphs Km,n(m < n) are discussed in this paper. Particularly, the VDIET chromatic numbers of Km,n(1 ≤ m ≤ 7, m < n) as well as complete graphs Kn are obtained.
- Źródło:
-
Discussiones Mathematicae Graph Theory; 2013, 33, 2; 289-306
2083-5892 - Pojawia się w:
- Discussiones Mathematicae Graph Theory
- Dostawca treści:
- Biblioteka Nauki