Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "k -rainbow index" wg kryterium: Temat


Wyświetlanie 1-1 z 1
Tytuł:
The 3-Rainbow Index of a Graph
Autorzy:
Chen, Lily
Li, Xueliang
Yang, Kang
Zhao, Yan
Powiązania:
https://bibliotekanauki.pl/articles/31339122.pdf
Data publikacji:
2015-02-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
rainbow tree
S-tree
k-rainbow index
Opis:
Let $G$ be a nontrivial connected graph with an edge-coloring $c : E(G) → {1, 2, . . ., q}, q ∈ ℕ$, where adjacent edges may be colored the same. A tree $T$ in $G$ is a rainbow tree if no two edges of $T$ receive the same color. For a vertex subset $S ⊆ V (G)$, a tree that connects $S$ in $G$ is called an $S$-tree. The minimum number of colors that are needed in an edge-coloring of $G$ such that there is a rainbow $S$-tree for each $k$-subset $S$ of $V(G)$ is called the $k$-rainbow index of $G$, denoted by $rx_k(G)$. In this paper, we first determine the graphs of size $m$ whose 3-rainbow index equals $m$, $m − 1$, $m − 2$ or $2$. We also obtain the exact values of $rx_3(G)$ when $G$ is a regular multipartite complete graph or a wheel. Finally, we give a sharp upper bound for $rx_3(G)$ when $G$ is 2-connected and 2-edge connected. Graphs $G$ for which $rx_3(G)$ attains this upper bound are determined.
Źródło:
Discussiones Mathematicae Graph Theory; 2015, 35, 1; 81-94
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies