- Tytuł:
- On the dominator colorings in trees
- Autorzy:
-
Merouane, Houcine
Chellali, Mustapha - Powiązania:
- https://bibliotekanauki.pl/articles/743280.pdf
- Data publikacji:
- 2012
- Wydawca:
- Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
- Tematy:
-
dominator coloring
domination
trees - Opis:
- In a graph G, a vertex is said to dominate itself and all its neighbors. A dominating set of a graph G is a subset of vertices that dominates every vertex of G. The domination number γ(G) is the minimum cardinality of a dominating set of G. A proper coloring of a graph G is a function from the set of vertices of the graph to a set of colors such that any two adjacent vertices have different colors. A dominator coloring of a graph G is a proper coloring such that every vertex of V dominates all vertices of at least one color class (possibly its own class). The dominator chromatic number $χ_d(G)$ is the minimum number of color classes in a dominator coloring of G. Gera showed that every nontrivial tree T satisfies $γ(T)+1 ≤ χ_d(T) ≤ γ(T)+2$. In this note we characterize nontrivial trees T attaining each bound.
- Źródło:
-
Discussiones Mathematicae Graph Theory; 2012, 32, 4; 677-683
2083-5892 - Pojawia się w:
- Discussiones Mathematicae Graph Theory
- Dostawca treści:
- Biblioteka Nauki