Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "stable graphs" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
k-independence stable graphs upon edge removal
Autorzy:
Chellali, Mustapha
Haynes, Teresa
Volkmann, Lutz
Powiązania:
https://bibliotekanauki.pl/articles/744261.pdf
Data publikacji:
2010
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
k-independence stable graphs
k-independence
Opis:
Let k be a positive integer and G = (V(G),E(G)) a graph. A subset S of V(G) is a k-independent set of G if the subgraph induced by the vertices of S has maximum degree at most k-1. The maximum cardinality of a k-independent set of G is the k-independence number βₖ(G). A graph G is called β¯ₖ-stable if βₖ(G-e) = βₖ(G) for every edge e of E(G). First we give a necessary and sufficient condition for β¯ₖ-stable graphs. Then we establish four equivalent conditions for β¯ₖ-stable trees.
Źródło:
Discussiones Mathematicae Graph Theory; 2010, 30, 2; 265-274
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Double domination critical and stable graphs upon vertex removal
Autorzy:
Khelifi, Soufiane
Chellali, Mustapha
Powiązania:
https://bibliotekanauki.pl/articles/743276.pdf
Data publikacji:
2012
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
double domination
vertex removal critical graphs
vertex removal stable graphs
Opis:
In a graph a vertex is said to dominate itself and all its neighbors. A double dominating set of a graph G is a subset of vertices that dominates every vertex of G at least twice. The double domination number of G, denoted $γ_{×2}(G)$, is the minimum cardinality among all double dominating sets of G. We consider the effects of vertex removal on the double domination number of a graph. A graph G is $γ_{×2}$-vertex critical graph ($γ_{×2}$-vertex stable graph, respectively) if the removal of any vertex different from a support vertex decreases (does not change, respectively) $γ_{×2}$(G). In this paper we investigate various properties of these graphs. Moreover, we characterize $γ_{×2}$-vertex critical trees and $γ_{×2}$-vertex stable trees.
Źródło:
Discussiones Mathematicae Graph Theory; 2012, 32, 4; 643-657
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies