- Tytuł:
- Extremal Graphs for a Bound on the Roman Domination Number
- Autorzy:
-
Bouchou, Ahmed
Blidia, Mostafa
Chellali, Mustapha - Powiązania:
- https://bibliotekanauki.pl/articles/31513493.pdf
- Data publikacji:
- 2020-08-01
- Wydawca:
- Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
- Tematy:
-
Roman domination
Roman domination number
Nordhaus-Gaddum inequalities - Opis:
- A Roman dominating function on a graph G = (V, E) is a function f:V (G) → {0, 1, 2} such that every vertex u for which f(u) = 0 is adjacent to at least one vertex v with f(v) = 2. The weight of a Roman dominating function is the value w(f) = Σu∈V(G) f(u). The minimum weight of a Roman dominating function on a graph G is called the Roman domination number of G, denoted by γR(G). In 2009, Chambers, Kinnersley, Prince and West proved that for any graph G with n vertices and maximum degree Δ, γR(G) ≤ n + 1 − Δ. In this paper, we give a characterization of graphs attaining the previous bound including trees, regular and semiregular graphs. Moreover, we prove that the problem of deciding whether γR(G) = n + 1 − Δ is co-complete. Finally, we provide a characterization of extremal graphs of a Nordhaus–Gaddum bound for γR(G) + γR (Ḡ), where Ḡ is the complement graph of G.
- Źródło:
-
Discussiones Mathematicae Graph Theory; 2020, 40, 3; 771-785
2083-5892 - Pojawia się w:
- Discussiones Mathematicae Graph Theory
- Dostawca treści:
- Biblioteka Nauki