- Tytuł:
- Bounds on the 2-domination number in cactus graphs
- Autorzy:
- Chellali, M.
- Powiązania:
- https://bibliotekanauki.pl/articles/254915.pdf
- Data publikacji:
- 2006
- Wydawca:
- Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
- Tematy:
-
2-domination number
total domination number
independence number
cactus graphs
trees - Opis:
- A 2-dominating set of a graph G is a set D of vertices of G such that every vertex not in S is dominated at least twice. The minimum cardinality of a 2-dominating set of G is the 2-domination number γ2(G). We show that if G is a nontrivial connected cactus graph with k(G) even cycles (k(G) ≥ 0), then γ2(G) ≥ γt(G) - k(G), and if G is a graph of order n with at most one cycle, then γ2(G) ≥ (n + l - s)/2 improving Fink and Jacobson's lower bound for trees with l > s, where γt(G), l and s are the total domination number, the number of leaves and support vertices of G, respectively. We also show that if T is a tree of order n ≥ 3, then γ2(T) ≤ β(T) + s - 1, where β(T) is the independence number of T.
- Źródło:
-
Opuscula Mathematica; 2006, 26, 1; 5-12
1232-9274
2300-6919 - Pojawia się w:
- Opuscula Mathematica
- Dostawca treści:
- Biblioteka Nauki