Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "domination number" wg kryterium: Temat


Wyświetlanie 1-5 z 5
Tytuł:
Bounds on the 2-domination number in cactus graphs
Autorzy:
Chellali, M.
Powiązania:
https://bibliotekanauki.pl/articles/254915.pdf
Data publikacji:
2006
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
2-domination number
total domination number
independence number
cactus graphs
trees
Opis:
A 2-dominating set of a graph G is a set D of vertices of G such that every vertex not in S is dominated at least twice. The minimum cardinality of a 2-dominating set of G is the 2-domination number γ2(G). We show that if G is a nontrivial connected cactus graph with k(G) even cycles (k(G) ≥ 0), then γ2(G) ≥ γt(G) - k(G), and if G is a graph of order n with at most one cycle, then γ2(G) ≥ (n + l - s)/2 improving Fink and Jacobson's lower bound for trees with l > s, where γt(G), l and s are the total domination number, the number of leaves and support vertices of G, respectively. We also show that if T is a tree of order n ≥ 3, then γ2(T) ≤ β(T) + s - 1, where β(T) is the independence number of T.
Źródło:
Opuscula Mathematica; 2006, 26, 1; 5-12
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On the global offensive alliance number of a tree
Autorzy:
Bouzefrane, M.
Chellali, M.
Powiązania:
https://bibliotekanauki.pl/articles/255263.pdf
Data publikacji:
2009
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
global offensive alliance number
domination number
trees
Opis:
For a graph G = (V, E), a set S ⊆ V is a dominating set if every vertex in V - S has at least a neighbor in S. A dominating set S is a global offensive alliance if for every vertex v in V - S, at least half of the vertices in its closed neighborhood are in S. The domination number ϒ(G) is the minimum cardinality of a dominating set of G and the global offensive alliance number ϒo(G) is the minimum cardinality of a global offensive alliance of G. We first show that every tree of order at least three with l leaves and s support vertices satisfies ϒo(T) ≥ (n - l + s + 1)/3 and we characterize extremal trees attaining this lower bound. Then we give a constructive characterization of trees with equal domination and global offensive alliance numbers.
Źródło:
Opuscula Mathematica; 2009, 29, 3; 223-228
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Total Roman Reinforcement in Graphs
Autorzy:
Ahangar, H. Abdollahzadeh
Amjadi, J.
Chellali, M.
Nazari-Moghaddam, S.
Sheikholeslami, S.M.
Powiązania:
https://bibliotekanauki.pl/articles/31343238.pdf
Data publikacji:
2019-11-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
total Roman domination number
total Roman reinforcement number
Opis:
A total Roman dominating function on a graph G is a labeling f : V (G) → {0, 1, 2} such that every vertex with label 0 has a neighbor with label 2 and the subgraph of G induced by the set of all vertices of positive weight has no isolated vertex. The minimum weight of a total Roman dominating function on a graph G is called the total Roman domination number of G. The total Roman reinforcement number rtR(G) of a graph G is the minimum number of edges that must be added to G in order to decrease the total Roman domination number. In this paper, we investigate the proper- ties of total Roman reinforcement number in graphs, and we present some sharp bounds for rtR(G). Moreover, we show that the decision problem for total Roman reinforcement is NP-hard for bipartite graphs.
Źródło:
Discussiones Mathematicae Graph Theory; 2019, 39, 4; 787-803
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Total 2-Rainbow Domination Numbers of Trees
Autorzy:
Ahangar, H. Abdollahzadeh
Amjadi, J.
Chellali, M.
Nazari-Moghaddam, S.
Sheikholeslami, S.M.
Powiązania:
https://bibliotekanauki.pl/articles/32083855.pdf
Data publikacji:
2021-05-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
2-rainbow dominating function
2-rainbow domination number
total 2-rainbow dominating function
total 2-rainbow domination number
Opis:
A 2-rainbow dominating function (2RDF) of a graph $G = (V(G), E(G))$ is a function $f$ from the vertex set $V(G)$ to the set of all subsets of the set {1, 2} such that for every vertex $v ∈ V(G)$ with $f(v) = ∅$ the condition \(\bigcup_{u∈N(v)}f(u) = \{1, 2\}\) is fulfilled, where $N(v)$ is the open neighborhood of $v$. A total 2-rainbow dominating function $f$ of a graph with no isolated vertices is a 2RDF with the additional condition that the subgraph of $G$ induced by $\{v ∈ V (G) | f(v) ≠∅\}$ has no isolated vertex. The total 2-rainbow domination number, $\gamma_{tr2}(G)$, is the minimum weight of a total 2-rainbow dominating function of $G$. In this paper, we establish some sharp upper and lower bounds on the total 2-rainbow domination number of a tree. Moreover, we show that the decision problem associated with $\gamma_{tr2}(G)$ is NP-complete for bipartite and chordal graphs.
Źródło:
Discussiones Mathematicae Graph Theory; 2021, 41, 2; 345-364
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Trees with equal global offensive k-alliance and k-domination numbers
Autorzy:
Chellali, M.
Powiązania:
https://bibliotekanauki.pl/articles/255451.pdf
Data publikacji:
2010
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
global offensive k-alliance number
k-domination number
trees
Opis:
Let k ≥ 1 be an integer. A set S of vertices of a graph G = (V (G), E(G)) is called a global offensive k-alliance if |N(v) ∩ S| ≥ |N(v) - S| + k for every v ∈ V (G) - S, where N(v) is the neighborhood of v. The subset S is a k-dominating set of G if every vertex in V (G) - S has at least k neighbors in S. The global offensive k-alliance number [formula] is the minimum cardinality of a global offensive k-alliance in G and the k-domination number ϒ k(G) is the minimum cardinality of a k-dominating set of G. For every integer k ≥ 1 every graph G satisfies [formula]. In this paper we provide for k ≥ 2 a characterization of trees T with equal [formula] and ϒ k(T).
Źródło:
Opuscula Mathematica; 2010, 30, 3; 249-254
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies