Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "environmental water analysis" wg kryterium: Temat


Wyświetlanie 1-1 z 1
Tytuł:
Water Quality Classification by Integration of Attribute-Realization and Support Vector Machine for the Chao Phraya River
Autorzy:
Sillberg, Chalisa Veesommai
Kullavanijaya, Pratin
Chavalparit, Orathai
Powiązania:
https://bibliotekanauki.pl/articles/1955579.pdf
Data publikacji:
2021
Wydawca:
Polskie Towarzystwo Inżynierii Ekologicznej
Tematy:
environmental data analysis
machine learning
SVM
support vector machine
water quality index
WQI
Opis:
The water quality index (WQI) is an essential indicator to manage water usage properly. This study aimed at applying a machine learning-based approach integrating attribute-realization (AR) and support vector machine (SVM) algorithm to classify the Chao Phraya River’s water quality. The historical monitoring dataset during 2008-2019 including biological oxygen demand (BOD), conductivity (Cond), dissolved oxygen (DO), faecal coliform bacteria (FCB), total coliform bacteria (TCB), ammonia (NH3-N), nitrate (NO3-N), salinity (Sal), suspended solids (SS), total nitrogen (TN), total dissolved solids (TDS), and turbidity (Turb), were processed via four studied steps: data pre-processing by means substituting method, contributing parameter evaluation by recognition pattern study, examination of the mathematic functions for quality classification, and validation of obtained approach. The results showed that NH3-N, TCB, FCB, BOD, DO, and Sal were the main attributes contributing orderly to water quality classification with confidence values of 0.80, 0.79, 0.78, 0.76, 0.69, and 0.64, respectively. Linear regression was the most suitable function to river water data classification than Sigmoid, Radial basis and Polynomial. The different number of attributes and mathematic functions promoted the different classification performance and accuracy. The validation confirmed that AR-SVM was a potent approach application to classify river water’s quality with 0.86-0.95 accuracy when applied three to six attributes.
Źródło:
Journal of Ecological Engineering; 2021, 22, 9; 70-86
2299-8993
Pojawia się w:
Journal of Ecological Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies