Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "znaki diakrytyczne" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Recognition of handwritten Latin characters with diacritics using CNN
Autorzy:
Lukasik, Edyta
Charytanowicz, Małgorzata
Milosz, Marek
Tokovarov, Michail
Kaczorowska, Monika
Czerwinski, Dariusz
Zientarski, Tomasz
Powiązania:
https://bibliotekanauki.pl/articles/2090714.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
handwritten documents
diacritic
neural networks
character recognition
deep learning
dokument odręczny
znaki diakrytyczne
sieci neuronowe
rozpoznawanie znaków
głęboka nauka
Opis:
Convolutional Neural Networks (CNN) have achieved huge popularity in solving problems in image analysis and in text recognition. In this work, we assess the effectiveness of CNN-based architectures where a network is trained in recognizing handwritten characters based on Latin script. European languages such as Dutch, French, German, etc., use different variants of the Latin script, so in the conducted research, the Latin alphabet was extended by certain characters with diacritics used in Polish language. To evaluate the recognition results under the same conditions, a handwritten Latin dataset was also developed. The proposed CNN architecture produced an accuracy of 96% for the extended character set. This is comparable to state-of-the-art results found in the domain of identifying handwritten characters. The presented approach extends the usage of CNN-based recognition to different variants of the Latin characters and shows it can be successfully used for a set of languages based on that script. It seems to be an effective technique for a set of languages written using the Latin script.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2021, 69, 1; e136210, 1--12
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Recognition of handwritten Latin characters with diacritics using CNN
Autorzy:
Lukasik, Edyta
Charytanowicz, Małgorzata
Milosz, Marek
Tokovarov, Michail
Kaczorowska, Monika
Czerwinski, Dariusz
Zientarski, Tomasz
Powiązania:
https://bibliotekanauki.pl/articles/2173581.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
handwritten documents
diacritic
neural networks
character recognition
deep learning
dokument odręczny
znaki diakrytyczne
sieci neuronowe
rozpoznawanie znaków
głęboka nauka
Opis:
Convolutional Neural Networks (CNN) have achieved huge popularity in solving problems in image analysis and in text recognition. In this work, we assess the effectiveness of CNN-based architectures where a network is trained in recognizing handwritten characters based on Latin script. European languages such as Dutch, French, German, etc., use different variants of the Latin script, so in the conducted research, the Latin alphabet was extended by certain characters with diacritics used in Polish language. To evaluate the recognition results under the same conditions, a handwritten Latin dataset was also developed. The proposed CNN architecture produced an accuracy of 96% for the extended character set. This is comparable to state-of-the-art results found in the domain of identifying handwritten characters. The presented approach extends the usage of CNN-based recognition to different variants of the Latin characters and shows it can be successfully used for a set of languages based on that script. It seems to be an effective technique for a set of languages written using the Latin script.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2021, 69, 1; art. no. e136210
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies