Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "ship engine" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Determination of nondimensional arguments in dimensional functions of ship propulsion engine operation
Autorzy:
Rosłanowski, J.
Charchalis, A.
Powiązania:
https://bibliotekanauki.pl/articles/246528.pdf
Data publikacji:
2015
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
ship propulsion engine operation dimensional analysis
dimensionless arguments in dimensional functions
Opis:
The following article describes different ways for determining dimensionless arguments in dimensional functions of ship propulsion engine operation. Dimensional space has also been characterized in relation to properties it possesses. An attention has been paid to the fact that it creates Abelian group, where involution fulfils multiplication axiom by scalar, and positive numbers that belong to dimensional space create dimensionless subspace. The conception of dimensional dependence has also been explained. There are also described conditions, which should be fulfilled by dimensional quantities to be dimensionally independent. Fundamental theorems of dimensional analysis have also been characterized. There is also given the definition of dimensional function of ship propulsion engine operation concerning values and dimensional arguments. It has been explained what requirements are to be fulfilled. One can also learn what limitations are imposed on dimensional function of ship propulsion engine operation concerning dimensional homogeneity and invariance. The ways of dimensional function transformation into a numerical one have been described. In addition, some conditions have been given which must be applied at given method of dimensional function transformation. An attention has been paid to the fact that dimensionless arguments are similarity invariant as a result of transformation by the similarity method of mathematical model of ship propulsion engine operation. In this study, the ship propulsion engine performance is expressed by product of Joule and second interpreted as transfer of energy in the form of work. Identification of ship propulsion engine operation by dimensional analysis performed in terms of its usefulness for diagnosis of ship propulsion engines. The basic problem of marine diesel exploitation is the monitoring of its technical condition. Diagnosis of marine diesel propulsion increases the safety of the ship and thus protects the marine environment against pollution.
Źródło:
Journal of KONES; 2015, 22, 2; 185-190
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Load analysis of propulsion engine during ships speed acceleratio
Autorzy:
Rosłanowski, J.
Charchalis, A.
Powiązania:
https://bibliotekanauki.pl/articles/246664.pdf
Data publikacji:
2012
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
load propulsion engine
ship's speed acceleration
control engine operation
running non-overload engine
Opis:
The following paper presents load analysis of propulsion engine during ship's speed acceleration. This process is carried out after manoeuvring in order to receive, as fast as possible, exploitation speeds of the ship, achieved during the voyage. The analysis concerns direct propulsion power system of low-speed engine of constant pitch propeller. Wrong steering process of engine load changes in temporary states, can cause engine overloading, as the result of its operation on the external limiting characteristic and can end up in engine seizure. Control of engine operation is carried on through selecting of adequate setting of rotational speed governor, which for specified external conditions can result in adequate position of fuel link and the choice of adequate fuel index arm dose. Equalization of the power delivered by the engine in given conditions of work with power required by the ship’s propeller cooperating with the hull, will establish adequate rotational speed of the engine and finally the speed of the vessel. In order to speed up the sip's motion, there must occur an overflow of propeller thrust over the required thrust (resistance) and this, in turn, is connected with the necessity to ensure the engine power surplus over the power required for a given range of operation or in other words sailing speed. This article presents the working model of ship propelling system during speed acceleration and concerns mainly nonoverload running of the engine. The model described above has been verified during tests in real conditions at sea.
Źródło:
Journal of KONES; 2012, 19, 2; 443-448
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Estimation of main engine power of seagoing ship at preliminary design stage
Autorzy:
Charchalis, A.
Krefft, J.
Powiązania:
https://bibliotekanauki.pl/articles/247536.pdf
Data publikacji:
2010
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
seagoing ships
container vessels
preliminary design stage
ship's propulsion
main engine power
Opis:
Permanent growth of the container shipbuilding has led to the need of research - developing activities with references to design and ship building process. The requirements for the container vessels have been modified and changed compared with the ships built in the eighties of the past century. The ships capacity have been increased up to and even above 10 000 twenty feet containers (TEU) with the service speed above 25 knots. For such a giant sea going vessels with the overall length above 300 meters and draught above 10 meters the ship hull resistance characteristics have been modified. Those conditions bring to the situation where the propulsion power for the seagoing ships reached 80 MW. The estimation of the main engine power relation in the preliminary design stage is the main aim of the paper. The problem is such important as in that stage the most important design decisions with relatively low investment costs are determined. Moreover, the preliminary design stage distinguishes that the designer possesses just a few design parameters given by the ship owner of the future vessel. That is why the correct choice of the main engine power is difficult to determine. Determination of the main propulsion power impacts the electric and heat energy amount and the production way of both energy forms. The main engine equation has been determined based on the container ship's parameters for the entire range of container vessels load capacity (TEU). The values of the design parameters have came from author 's data base for the contemporary container vessels.
Źródło:
Journal of KONES; 2010, 17, 4; 89-95
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies