- Tytuł:
- The Product Connectivity Banhatti Index of a Graph
- Autorzy:
-
Kulli, V.R.
Chaluvaraju, B.
Boregowda, H.S. - Powiązania:
- https://bibliotekanauki.pl/articles/31343417.pdf
- Data publikacji:
- 2019-05-01
- Wydawca:
- Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
- Tematy:
-
Randić index
Zagreb indices
Banhatti indices
product connectivity Banhatti index - Opis:
- Let $ G = (V, E) $ be a connected graph with vertex set $ V (G) $ and edge set $ E(G) $. The product connectivity Banhatti index of a graph $G$ is defined as, \( PB(G)= \sum_{ue} \tfrac{1}{ \sqrt { d_G(u) d_G(e) } } \), where $ue$ means that the vertex $u$ and edge $e$ are incident in $G$. In this paper, we determine $PB(G)$ of some standard classes of graphs. We also provide some relationship between $PB(G)$ in terms of order, size, minimum / maximum degrees and minimal non-pendant vertex degree. In addition, we obtain some bounds on $PB(G)$ in terms of Randić, Zagreb and other degree based topological indices of $G$.
- Źródło:
-
Discussiones Mathematicae Graph Theory; 2019, 39, 2; 505-517
2083-5892 - Pojawia się w:
- Discussiones Mathematicae Graph Theory
- Dostawca treści:
- Biblioteka Nauki