- Tytuł:
- A novel fuzzy c-regression model algorithm using a new error measure and particle swarm optimization
- Autorzy:
-
Soltani, M.
Chaari, A.
Ben Hmida, F. - Powiązania:
- https://bibliotekanauki.pl/articles/330134.pdf
- Data publikacji:
- 2012
- Wydawca:
- Uniwersytet Zielonogórski. Oficyna Wydawnicza
- Tematy:
-
model rozmyty Takagi-Sugeno
algorytm grupowania
metoda najmniejszych kwadratów
optymalizacja rojem cząstek
Takagi-Sugeno fuzzy models
noise clustering algorithm
fuzzy c-regression model
orthogonal least squares
particle swarm optimization (PSO) - Opis:
- This paper presents a new algorithm for fuzzy c-regression model clustering. The proposed methodology is based on adding a second regularization term in the objective function of a Fuzzy C-Regression Model (FCRM) clustering algorithm in order to take into account noisy data. In addition, a new error measure is used in the objective function of the FCRM algorithm, replacing the one used in this type of algorithm. Then, particle swarm optimization is employed to finally tune parameters of the obtained fuzzy model. The orthogonal least squares method is used to identify the unknown parameters of the local linear model. Finally, validation results of two examples are given to demonstrate the effectiveness and practicality of the proposed algorithm.
- Źródło:
-
International Journal of Applied Mathematics and Computer Science; 2012, 22, 3; 617-628
1641-876X
2083-8492 - Pojawia się w:
- International Journal of Applied Mathematics and Computer Science
- Dostawca treści:
- Biblioteka Nauki