Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Burnat, M." wg kryterium: Autor


Wyświetlanie 1-7 z 7
Tytuł:
Influence of thermochemical treatment methods on pitting corrosion resistance of Ti6Al4V alloy
Autorzy:
Czerniak-Reczulska, M.
Burnat, B.
Grabarczyk, J.
Powiązania:
https://bibliotekanauki.pl/articles/285526.pdf
Data publikacji:
2016
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Polskie Towarzystwo Biominerałów
Tematy:
Ti6Al4V alloy
corrosion
thermochemical treatment
Źródło:
Engineering of Biomaterials; 2016, 19, 138; 71
1429-7248
Pojawia się w:
Engineering of Biomaterials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Influence of Chemical Surface Treatment on the Corrosion Resistance of Titanium Castings Used in Dental Prosthetics
Autorzy:
Burnat, B.
Parchańska-Kowalik, M.
Klimek, L.
Powiązania:
https://bibliotekanauki.pl/articles/381457.pdf
Data publikacji:
2014
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
titanium castings
prosthetic components
abrasive blasting
chemical treatment
corrosion tests
odlewy z tytanu
elementy protetyczne
piaskowanie
obróbka ścierna
Opis:
Air abrasion process is used for cleaning casting surface of prosthetic components, and to prepare the surface of these elements for the application of veneering items. Its side effect, however, is that abrasive particles are embedded in the treated surface, which can be up to 30% of the surface and it constitutes the side effect of this procedure. Such a significant participation of foreign material can not be indifferent to the properties of the surface. Embedded particles can be the place of stress concentration causing cracking of ceramics, and may deteriorate corrosion resistance by forming corrosive microlinks. In the latter cases, it would be advisable to remove elements embedded into the surface. The simplest method is chemical etching or electrochemical one. Nevertheless, these procedures should not significantly change the parameters of the surface. Among many possible reagents only a few fulfills all the above conditions. In addition, processing should not impair corrosion resistance of titanium, which is one of the most important factors determining its use as a prosthetic restoration in the mouth. The study presented results of corrosion resistance of titanium used to make prosthetic components by means of casting method, which were subjected to chemical processing designed to remove the embedded abrasive particles. The aim of the study was to investigate whether etching with selected reagents affects the corrosion resistance of titanium castings. For etching the following reagents were used: 30% HNO3 + 3% HF + H2O, HNO3+ HF+ glycerol (1:2:3), 4% HF in H2O2, 4% HF in H2O, with a control sandblasted sample, not subjected to etching. Tests demonstrated that the etching affected corrosion properties of test samples, in each case the reduction of the corrosion potential occurred - possibly due to the removal of particles of Al2O3 from the surface and activation of the surface. None of the samples underwent pitting corrosion as a result of polarization to 9 V. Values of the polarization resistance, and potentiodynamic characteristics indicated that the best corrosion resistance exhibited the samples after etching in a mixture of 4% solution of HF in H2O2. They showed very good passivation of the surface.
Źródło:
Archives of Foundry Engineering; 2014, 14, 3; 11-16
1897-3310
2299-2944
Pojawia się w:
Archives of Foundry Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Corrosion behaviour of polished and sandblasted titanium alloys in PBS solution
Autorzy:
Burnat, B.
Walkowiak-Przybyło, M.
Błaszczyk, T.
Klimek, L.
Powiązania:
https://bibliotekanauki.pl/articles/306724.pdf
Data publikacji:
2013
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
corrosion
PBS solution
polishing
sandblasting
titanium alloys
korozja
stop tytanu
piaskowanie
Opis:
In this work, we performed comparative studies of the effect of surface preparation of Ti6Al4V and Ti6Al7Nb biomedical alloys and the influence of endothelial cells on their corrosion behaviour in PBS (Phosphate Buffered Saline). Two different methods of surface modification were applied – polishing and sandblasting. The polished Ti6Al7Nb alloy was found to have the best resistance against general corrosion in PBS. It was characterized by the lowest corrosion rate, the widest passive range and the lowest reactivity. Both alloys prepared by sandblasting exhibited worse corrosion properties in comparison to the polished ones. This can be associated with a greater development of their surface and the presence of Al2O3 grains which caused an increase of corrosion potential but might also influence the weakening of the passive layer. Results of potentiodynamic anodic polarization indicated that more resistant to pitting corrosion was Ti6Al7Nb alloy regardless of the method of surface preparation. In those cases, anodic polarization caused only an increase of passive layer, while in the case of sandblasted Ti6Al4V alloy it caused a pitting corrosion. The results obtained allowed us to conclude that the niobium-titanium alloys had higher corrosion resistance than titanium alloys with vanadium. Moreover, it was stated that endothelial cells improved the corrosion resistance of all the titanium alloys examined.
Źródło:
Acta of Bioengineering and Biomechanics; 2013, 15, 1; 87-94
1509-409X
2450-6303
Pojawia się w:
Acta of Bioengineering and Biomechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The effect of repeated heating on corrosion resistance, hardness and microstructure of a Co-Cr-W prosthetic alloy
Autorzy:
Rzepkowska, M.
Burnat, B.
Pietnicki, K.
Skrzypek, S.
Klimek, L.
Powiązania:
https://bibliotekanauki.pl/articles/368058.pdf
Data publikacji:
2020
Wydawca:
Stowarzyszenie Komputerowej Nauki o Materiałach i Inżynierii Powierzchni w Gliwicach
Tematy:
mechanical properties
corrosion
prosthetic alloys
structure
high temperature annealing
właściwości mechaniczne
korozja
stopy protetyczne
struktura
wygrzewanie wysokotemperaturowe
Opis:
Purpose: of this article is to present the results of tests carried out on the impact of repeated heating on the corrosion resistance of a Co-Cr-W prosthetic alloy. Design/methodology/approach: The study used samples prepared in a manner analogous to the production of a dental prosthesis. The effect of three and six-time heating of the material on its properties such as corrosion resistance, microstructure and material hardness were carried out. Findings: Repeated heating of the chromium-cobalt alloy has no significant effect on the polarization resistance and the potentiodynamic characteristics of the material. The introduction of heating in alloy treatment results in an increase in the hardness of the material, however, the number of annealing cycles does not affect this feature significantly. Samples subjected to different amounts of thermal treatments have different microstructure; it should be assumed that this will change the mechanical properties. Research limitations/implications: Microstructure tests carried out after electrochemical corrosion tests showed changes in the microstructure of samples subjected to subsequent annealing. The tests of material hardness and corrosion did not show any significant differences that may result from differences in structure, therefore further tests characterizing the physical properties of the material will be carried out. Originality/value: The article is a description of preliminary research on the impact of multiple annealing used in dental prosthetics on the properties of metallic material. Further work will be carried out to identify the properties that may be affected by the indicated changes in microstructure.
Źródło:
Journal of Achievements in Materials and Manufacturing Engineering; 2020, 99, 2; 64-71
1734-8412
Pojawia się w:
Journal of Achievements in Materials and Manufacturing Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Corrosion properties of Ca-doped TiO2 coatings
Autorzy:
Burnat, B.
Robak, J.
Leniart, A.
Skrzypek, S.
Brycht, M.
Powiązania:
https://bibliotekanauki.pl/articles/283933.pdf
Data publikacji:
2014
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Polskie Towarzystwo Biominerałów
Tematy:
biomaterials
surface modification
sol-gel method
doping
corrosion
Opis:
The paper presents the preparation and characterization of TiO2 coating doped with Ca produced by the sol-gel method using titanium alkoxide as the precursor of titania as well as calcium nitrate as dopant source. These coatings were used to modify the biomedical alloy M30NW. Using the optical microscopy and the atomic force microscopy the topography of synthesized coatings was characterized. Whereas using electrochemical methods the corrosion measurements were carried out. Anticorrosion properties of calcium-doped TiO2 coating were determined in PBS solution on the basis of corrosion potential Ecor, polarization resistance Rp, corrosion rate CR, current density in the passive range i0.5 and also breakdown Eb and repassivation Erep potentials. Analogous corrosion tests were also made for the uncoated alloy as well as for alloy coated with pure TiO2 coating. It was stated that modification of M30NW alloy surface by calcium-doped TiO2 coating shows anticorrosion properties in PBS solution. These properties are slightly lower compared to a pure TiO2 coating. The analysis of the topography of TiO2-based coatings showed that calcium doping increases the surface development and roughness of the obtained coatings.
Źródło:
Engineering of Biomaterials; 2014, 17, no. 128-129; 100-102
1429-7248
Pojawia się w:
Engineering of Biomaterials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Plasma oxidized Ti6Al4V and Ti6Al7Nb alloys for biomedical applications
Autorzy:
Pązik, B.
Grabarczyk, J.
Batory, D.
Kaczorowski, W.
Burnat, B.
Czerniak-Reczulska, M.
Makówka, M.
Niedzielski, P.
Powiązania:
https://bibliotekanauki.pl/articles/285637.pdf
Data publikacji:
2016
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Polskie Towarzystwo Biominerałów
Tematy:
titanium alloys
plasma oxidizing
tribology
wear
corrosion
Opis:
Titanium and its alloys are one of the most popular metallic materials used in medicine for many years. Their favorable mechanical properties, high corrosion resistance and good biotolerance in an environment of tissues and body fluids, cause that they are widely used as construction material of orthopaedic dental and neurological implants. Their disadvantages are poor tribological properties manifested by high coefficient of friction, scuffing and tendency to formation of adhesive couplings. In many research centers the works on improving the unfavorable tribological properties of titanium alloys are conducted. They rely on the use of modern methods of surface treatment including the thermo-chemical methods (nitriding, carburizing, oxidation) and the synthesis of thin films using PVD and CVD methods. In the presented work the glow discharge oxidation was applied to improve the surface properties of two-phase Ti6Al4V and Ti6Al7Nb titanium alloys. The results include a description of the obtained structure of the surface layer, surface topography, micro-hardness, wear ratio and corrosion resistance. The obtained results indicate changes in the surface layer of the material. The surface hardness was more than doubled and the depth of increased hardness region was up to 85 microns. This, in turn, several times decreased the wear rate of the modified materials while reducing the wear rate of the countersample. At the same time the carried out thermo-chemical treatment did not cause any structural changes in the core material. The oxidation process preferably influenced the corrosion properties of titanium alloys. Both, significant increase in the corrosion potential (approx. 0.36 V), as well as increased polarization resistance were observed. The modified surfaces also retained a high resistance to pitting corrosion.
Źródło:
Engineering of Biomaterials; 2016, 19, 135; 8-12
1429-7248
Pojawia się w:
Engineering of Biomaterials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Plasma oxidized Ti6Al4V and Ti6Al7Nb alloys for biomedical applications
Autorzy:
Pązik, B.
Grabarczyk, J.
Batory, D.
Kaczorowski, W.
Burnat, B.
Czerniak-Reczulska, M.
Makówka, M.
Niedzielski, P.
Powiązania:
https://bibliotekanauki.pl/articles/285698.pdf
Data publikacji:
2016
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Polskie Towarzystwo Biominerałów
Tematy:
Ti6Al4V alloy
Ti-6Al-7Nb alloy
biomaterials
Źródło:
Engineering of Biomaterials; 2016, 19, 138; 68
1429-7248
Pojawia się w:
Engineering of Biomaterials
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-7 z 7

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies