- Tytuł:
- On Grundy Total Domination Number in Product Graphs
- Autorzy:
-
Brešar, Boštjan
Bujtás, Csilla
Gologranc, Tanja
Klavžar, Sandi
Košmrlj, Gašper
Marc, Tilen
Patkós, Balázs
Tuza, Zsolt
Vizer, Máté - Powiązania:
- https://bibliotekanauki.pl/articles/32083828.pdf
- Data publikacji:
- 2021-02-01
- Wydawca:
- Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
- Tematy:
-
total domination
Grundy total domination number
graph product - Opis:
- A longest sequence $(v_1, . . ., v_k)$ of vertices of a graph $G$ is a Grundy total dominating sequence of $G$ if for all $i$, \(N(υ_i)\backslash\bigcup_{j=1}^{i-1}N(υ_j)≠∅\). The length $k$ of the sequence is called the Grundy total domination number of $G$ and denoted $\gamma_{gr}^t(G)$. In this paper, the Grundy total domination number is studied on four standard graph products. For the direct product we show that $\gamma_{gr}^t(G×H)≥\gamma_{gr}^t(G)\gamma_{gr}^t(H)$, conjecture that the equality always holds, and prove the conjecture in several special cases. For the lexicographic product we express $\gamma_{gr}^t(G∘H)$ in terms of related invariant of the factors and find some explicit formulas for it. For the strong product, lower bounds on $\gamma_{gr}^t(G⊠H)$ are proved as well as upper bounds for products of paths and cycles. For the Cartesian product we prove lower and upper bounds on the Grundy total domination number when factors are paths or cycles.
- Źródło:
-
Discussiones Mathematicae Graph Theory; 2021, 41, 1; 225-247
2083-5892 - Pojawia się w:
- Discussiones Mathematicae Graph Theory
- Dostawca treści:
- Biblioteka Nauki