Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "severe plastic" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Refinement of Al-5%Cu and Al-25%Cu Alloys by Means of KoBo Methods
Autorzy:
Rodak, K.
Brzezińska, A.
Sobota, J.
Powiązania:
https://bibliotekanauki.pl/articles/351350.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
Al-Cu alloys
severe plastic deformation
ultrafine-grains
microstructure
STEM
Opis:
This study was undertaken to investigate the effect of severe plastic deformation (SPD) by extrusion combined with reversible torsion (KoBo) method on microstructure and mechanical properties of Al-5Cu and Al-25Cu alloys. The extrusion combined with reversible torsion was carried out using reduction coefficient of λ = 30 and λ = 98. In this work, the microstructure was characterized by light microscopy (LM), scanning electron microscopy (SEM) and scanning transmission electron microscopy (STEM). Compression test and tensile test were performed for deformed alloys. The binary Al-5Cu and Al-25Cu alloys consist of the face cantered cubic (FCC) α phase in the form of dendrites and tetragonal (C16) θ-Al2Cu intermetallic phase observed in interdentritic regions. The increase of Cu content leads to increase of interdentritic regions. The microstructure of the alloys is refined after applying KoB deformation with λ = 30 and λ = 98. Ultimate Tensile Strength (UTS) of Al-5Cu alloy after KoBo deformation with λ = 30 and λ = 98 reached about 200 MPa. UTS for samples of Al-25Cu with λ = 30 and λ = 98 increased compared to Al-5Cu alloy and exceed 320 MPa and 270 MPa respectively. All samples showed increase of plasticity with increase of reduction coefficient. Independently of reduction coefficient, the compressive strain of Al-5Cu alloys is about 60%. The Al-25Cu alloy with λ = 98 showed the value of compressive strain exceed 60%, although for this same alloy but with λ = 30, the compressive strain is only 35%.
Źródło:
Archives of Metallurgy and Materials; 2020, 65, 4; 1477-1482
1733-3490
Pojawia się w:
Archives of Metallurgy and Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Influence of Solid Solution and Aging Treatment Conditions on the Formation of Ultrafine-Grained Structure of CuCr0.6 Alloy Processed by Compression with Oscillatory Torsion
Autorzy:
Urbańczyk-Gucwa, A.
Brzezińska, A.
Rodak, K.
Powiązania:
https://bibliotekanauki.pl/articles/947582.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
CuCr0.6 alloy
severe plastic deformation
ultrafine-grains
STEM
Opis:
The samples of the CuCr0.6 alloy in the solution treated and additionally in aging states were severely plastically deformed by compression with oscillatory torsion (COT) method to produce ultrafine – grained structure. The samples were processed by using process parameters as: frequency of torsion (f = 1.6 Hz), compression speed (v = 0.04 mm/s), angle torsion (α = ±6°), height reduction (Δh = 7 mm). The total effective strain was εft = 40. The microstructure has been analyzed by scanning transmission electron microscope (STEM) Hitachi HD-2300A equipped with a cold field emission gun at an accelerating voltage of 200 kV. The quantitative microstructure investigations as disorientation angles were performed using a FEI INSPECT F scanning electron microscope (SEM) equipped with a cold field emission gun and a electron backscattering diffraction (EBSD) detector. The mechanical properties were determined using MST QTest/10 machine equipped with digital image correlation (DIC). The COT processed alloy previously aged at 500°C per 2h shows high mechanical strength, ultimate tensile strength UTS: 521 MPa and yield tensile strength YS: 488 MP attributed to the high density of coherent precipitates and ultrafine grained structure. Keywords: CuCr0.6 alloy, severe plastic deformation, ultrafine-grains, STEM
Źródło:
Archives of Metallurgy and Materials; 2018, 63, 4; 2061-2066
1733-3490
Pojawia się w:
Archives of Metallurgy and Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Crystallographic Texture and Grain Refinement in the CuCr Alloy Deformed by SPD Method
Autorzy:
Urbańczyk-Gucwa, A.
Brzezińska, A.
Adamczyk-Cieślak, B.
Rodak, K.
Powiązania:
https://bibliotekanauki.pl/articles/354979.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
severe plastic deformation
heat treatment
microstructure
texture
CuCr0.6 alloy
Opis:
Microstructure and texture of the CuCr0.6 alloy processed by rolling with cyclic movement of rolls (RCMR) at room temperature were investigated. The RCMR processing was applied for the samples in different initial conditions in the solid solution followed by quenching into iced water at 1000°C for 3 h and in aging treatment conditions performed at 500°C for 2 h and at 700°C for 24 h. Application of the solution and aging processes prior to RCMR deformation results in the partial dissolution of Cr particles into the Cu matrix and precipitation of the second phase particles. RCMR processing with value of the total effective strain (εft) of 5 was introduced to the material. It was found that the RCMR method is effective in texture weakening. The obtained results revealed that there is a large similarity in texture orientations after RCMR processing independently of heat treatment conditions. Cyclic character of deformation leads to an incomplete transition of LAB to HAB.
Źródło:
Archives of Metallurgy and Materials; 2019, 64, 4; 1563-1568
1733-3490
Pojawia się w:
Archives of Metallurgy and Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Microstructural Features and Mechanical Properties after Applying Rolling with Cyclic Movement of Rolls of an Al-Li Alloys
Autorzy:
Brzezińska, A.
Urbańczyk-Gucwa, A.
Molak, R.
Rodak, K.
Powiązania:
https://bibliotekanauki.pl/articles/352162.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
Al-Li alloy
severe plastic deformation
ultrafine-grains
STEM
SEM/EBSD
Opis:
Two strength-age hardening aluminum-lithium alloys: Al-2.3wt%Li and Al-2.2wt%Li-0.1wt%Zr in two different heat treatment conditions: solution state (S) and additionally in aging state (A) were severely plastically deformed by rolling with cyclic movement of rolls (RCMR) method to produce ultrafine - grained structure. Two thermo-mechanical treatments were used: (S+A+RCMR) and (S+RCMR+A+RCMR). To investigate the combined effect of plastic deformation and heat treatment, tensile tests were performed. Microstructural observations were undertaken using scanning transmission electron microscopy (STEM), and scanning transmission electron microscopy (SEM) equipped with electron backscattering diffraction detector (EBSD). Based on the obtained results, it can be deduced that maximum mechanical properties as: yield strength (YS) and ultimate tensile strength (UTS) couldbe achieved when the microstructure of alloys is in (S+A+RCMR) state. For samples in (S+RCMR+A+RCMR) state, ductility is higher than for (S+A+RCMR) state. The microstructural results shows that the favourable conditions for decreasing grain size of alloys is (S+A+RCMR) state. Additionally, in this state is much greater dislocation density than for (S+RCMR+A+RCMR) state. The microstructure of alloys in (S+RCMR+A+RCMR) state is characterized by grains/subgrains with higher average diameter and with higher misorientation angles compared with (S+A+RCMR) state.
Źródło:
Archives of Metallurgy and Materials; 2019, 64, 4; 1533-1540
1733-3490
Pojawia się w:
Archives of Metallurgy and Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies