Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Mihók, Peter" wg kryterium: Autor


Wyświetlanie 1-8 z 8
Tytuł:
Hereditarnia
Autorzy:
Broere, Izak
Mihók, Peter
Powiązania:
https://bibliotekanauki.pl/articles/31231995.pdf
Data publikacji:
2013-03-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Źródło:
Discussiones Mathematicae Graph Theory; 2013, 33, 1; 7-7
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Universality in Graph Properties with Degree Restrictions
Autorzy:
Broere, Izak
Heidema, Johannes
Mihók, Peter
Powiązania:
https://bibliotekanauki.pl/articles/30146518.pdf
Data publikacji:
2013-07-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
countable graph
universal graph
induced-hereditary
k-degenerate graph
graph with colouring number at most k + 1
graph property with assignment
Opis:
Rado constructed a (simple) denumerable graph R with the positive integers as vertex set with the following edges: For given m and n with m < n, m is adjacent to n if n has a 1 in the m’th position of its binary expansion. It is well known that R is a universal graph in the set ℐc of all countable graphs (since every graph in ℐc is isomorphic to an induced subgraph of R). A brief overview of known universality results for some induced-hereditary subsets of ℐc is provided. We then construct a k-degenerate graph which is universal for the induced-hereditary property of finite k-degenerate graphs. In order to attempt the corresponding problem for the property of countable graphs with colouring number at most k + 1, the notion of a property with assignment is introduced and studied. Using this notion, we are able to construct a universal graph in this graph property and investigate its attributes.
Źródło:
Discussiones Mathematicae Graph Theory; 2013, 33, 3; 477-492
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On generalized list colourings of graphs
Autorzy:
Borowiecki, Mieczysław
Broere, Izak
Mihók, Peter
Powiązania:
https://bibliotekanauki.pl/articles/972024.pdf
Data publikacji:
1997
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
hereditary property of graphs
list colouring
vertex partition number
Opis:
Vizing [15] and Erdős et al. [8] independently introduce the idea of considering list-colouring and k-choosability. In the both papers the choosability version of Brooks' theorem [4] was proved but the choosability version of Gallai's theorem [9] was proved independently by Thomassen [14] and by Kostochka et al. [11]. In [3] some extensions of these two basic theorems to (,k)-choosability have been proved.
In this paper we prove some extensions of the well-known bounds for the -chromatic number to the (,k)-choice number and then an extension of Brooks' theorem.
Źródło:
Discussiones Mathematicae Graph Theory; 1997, 17, 1; 127-132
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The order of uniquely partitionable graphs
Autorzy:
Broere, Izak
Frick, Marietjie
Mihók, Peter
Powiązania:
https://bibliotekanauki.pl/articles/972025.pdf
Data publikacji:
1997
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
hereditary property of graphs
uniquely partitionable graphs
Opis:
Let ₁,...,ₙ be properties of graphs. A (₁,...,ₙ)-partition of a graph G is a partition {V₁,...,Vₙ} of V(G) such that, for each i = 1,...,n, the subgraph of G induced by $V_i$ has property $_i$. If a graph G has a unique (₁,...,ₙ)-partition we say it is uniquely (₁,...,ₙ)-partitionable. We establish best lower bounds for the order of uniquely (₁,...,ₙ)-partitionable graphs, for various choices of ₁,...,ₙ.
Źródło:
Discussiones Mathematicae Graph Theory; 1997, 17, 1; 115-125
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Criteria for of the existence of uniquely partitionable graphs with respect to additive induced-hereditary properties
Autorzy:
Broere, Izak
Bucko, Jozef
Mihók, Peter
Powiązania:
https://bibliotekanauki.pl/articles/743535.pdf
Data publikacji:
2002
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
induced-hereditary properties
reducibility
divisibility
uniquely partitionable graphs.
Opis:
Let ₁,₂,...,ₙ be graph properties, a graph G is said to be uniquely (₁,₂, ...,ₙ)-partitionable if there is exactly one (unordered) partition {V₁,V₂,...,Vₙ} of V(G) such that $G[V_i] ∈ _i$ for i = 1,2,...,n. We prove that for additive and induced-hereditary properties uniquely (₁,₂,...,ₙ)-partitionable graphs exist if and only if $_i$ and $_j$ are either coprime or equal irreducible properties of graphs for every i ≠ j, i,j ∈ {1,2,...,n}.
Źródło:
Discussiones Mathematicae Graph Theory; 2002, 22, 1; 31-37
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Factorizations of properties of graphs
Autorzy:
Broere, Izak
Teboho Moagi, Samuel
Mihók, Peter
Vasky, Roman
Powiązania:
https://bibliotekanauki.pl/articles/744148.pdf
Data publikacji:
1999
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
factorization
property of graphs
irreducible property
reducible property
lattice of properties of graphs
Opis:
A property of graphs is any isomorphism closed class of simple graphs. For given properties of graphs ₁,₂,...,ₙ a vertex (₁, ₂, ...,ₙ)-partition of a graph G is a partition {V₁,V₂,...,Vₙ} of V(G) such that for each i = 1,2,...,n the induced subgraph $G[V_i]$ has property $_i$. The class of all graphs having a vertex (₁, ₂, ...,ₙ)-partition is denoted by ₁∘₂∘...∘ₙ. A property is said to be reducible with respect to a lattice of properties of graphs if there are n ≥ 2 properties ₁,₂,...,ₙ ∈ such that = ₁∘₂∘...∘ₙ; otherwise is irreducible in . We study the structure of different lattices of properties of graphs and we prove that in these lattices every reducible property of graphs has a finite factorization into irreducible properties.
Źródło:
Discussiones Mathematicae Graph Theory; 1999, 19, 2; 167-174
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A survey of hereditary properties of graphs
Autorzy:
Borowiecki, Mieczysław
Broere, Izak
Frick, Marietjie
Mihók, Peter
Semanišin, Gabriel
Powiązania:
https://bibliotekanauki.pl/articles/971986.pdf
Data publikacji:
1997
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
hereditary property of graphs
vertex partition
reducible property
graph invariants
complexity
Opis:
In this paper we survey results and open problems on the structure of additive and hereditary properties of graphs. The important role of vertex partition problems, in particular the existence of uniquely partitionable graphs and reducible properties of graphs in this structure is emphasized. Many related topics, including questions on the complexity of related problems, are investigated.
Źródło:
Discussiones Mathematicae Graph Theory; 1997, 17, 1; 5-50
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-8 z 8

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies